Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis.

Identifieur interne : 002304 ( PubMed/Curation ); précédent : 002303; suivant : 002305

Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis.

Auteurs : Ekaterina Minskaia [Allemagne] ; Tobias Hertzig ; Alexander E. Gorbalenya ; Valérie Campanacci ; Christian Cambillau ; Bruno Canard ; John Ziebuhr

Source :

RBID : pubmed:16549795

Descripteurs français

English descriptors

Abstract

Replication of the giant RNA genome of severe acute respiratory syndrome (SARS) coronavirus (CoV) and synthesis of as many as eight subgenomic (sg) mRNAs are mediated by a viral replicase-transcriptase of outstanding complexity that includes an essential endoribonuclease activity. Here, we show that the CoV replicative machinery, unlike that of other RNA viruses, also uses an exoribonuclease (ExoN) activity, which is associated with nonstructural protein (nsp) 14. Bacterially expressed forms of SARS-CoV nsp14 were shown to act on both ssRNAs and dsRNAs in a 3'-->5' direction. The activity depended on residues that are conserved in the DEDD exonuclease superfamily. The protein did not hydrolyze DNA or ribose-2'-O-methylated RNA substrates and required divalent metal ions for activity. A range of 5'-labeled ssRNA substrates were processed to final products of approximately 8-12 nucleotides. When part of dsRNA or in the presence of nonlabeled dsRNA, the 5'-labeled RNA substrates were processed to significantly smaller products, indicating that binding to dsRNA in cis or trans modulates the exonucleolytic activity of nsp14. Characterization of human CoV 229E ExoN active-site mutants revealed severe defects in viral RNA synthesis, and no viable virus could be recovered. Besides strongly reduced genome replication, specific defects in sg RNA synthesis, such as aberrant sizes of specific sg RNAs and changes in the molar ratios between individual sg RNA species, were observed. Taken together, the study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.

DOI: 10.1073/pnas.0508200103
PubMed: 16549795

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16549795

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis.</title>
<author>
<name sortKey="Minskaia, Ekaterina" sort="Minskaia, Ekaterina" uniqKey="Minskaia E" first="Ekaterina" last="Minskaia">Ekaterina Minskaia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Virology and Immunology, University of Würzburg, 97078 Würzburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Virology and Immunology, University of Würzburg, 97078 Würzburg</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hertzig, Tobias" sort="Hertzig, Tobias" uniqKey="Hertzig T" first="Tobias" last="Hertzig">Tobias Hertzig</name>
</author>
<author>
<name sortKey="Gorbalenya, Alexander E" sort="Gorbalenya, Alexander E" uniqKey="Gorbalenya A" first="Alexander E" last="Gorbalenya">Alexander E. Gorbalenya</name>
</author>
<author>
<name sortKey="Campanacci, Valerie" sort="Campanacci, Valerie" uniqKey="Campanacci V" first="Valérie" last="Campanacci">Valérie Campanacci</name>
</author>
<author>
<name sortKey="Cambillau, Christian" sort="Cambillau, Christian" uniqKey="Cambillau C" first="Christian" last="Cambillau">Christian Cambillau</name>
</author>
<author>
<name sortKey="Canard, Bruno" sort="Canard, Bruno" uniqKey="Canard B" first="Bruno" last="Canard">Bruno Canard</name>
</author>
<author>
<name sortKey="Ziebuhr, John" sort="Ziebuhr, John" uniqKey="Ziebuhr J" first="John" last="Ziebuhr">John Ziebuhr</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16549795</idno>
<idno type="pmid">16549795</idno>
<idno type="doi">10.1073/pnas.0508200103</idno>
<idno type="wicri:Area/PubMed/Corpus">002304</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002304</idno>
<idno type="wicri:Area/PubMed/Curation">002304</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002304</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis.</title>
<author>
<name sortKey="Minskaia, Ekaterina" sort="Minskaia, Ekaterina" uniqKey="Minskaia E" first="Ekaterina" last="Minskaia">Ekaterina Minskaia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Virology and Immunology, University of Würzburg, 97078 Würzburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Virology and Immunology, University of Würzburg, 97078 Würzburg</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hertzig, Tobias" sort="Hertzig, Tobias" uniqKey="Hertzig T" first="Tobias" last="Hertzig">Tobias Hertzig</name>
</author>
<author>
<name sortKey="Gorbalenya, Alexander E" sort="Gorbalenya, Alexander E" uniqKey="Gorbalenya A" first="Alexander E" last="Gorbalenya">Alexander E. Gorbalenya</name>
</author>
<author>
<name sortKey="Campanacci, Valerie" sort="Campanacci, Valerie" uniqKey="Campanacci V" first="Valérie" last="Campanacci">Valérie Campanacci</name>
</author>
<author>
<name sortKey="Cambillau, Christian" sort="Cambillau, Christian" uniqKey="Cambillau C" first="Christian" last="Cambillau">Christian Cambillau</name>
</author>
<author>
<name sortKey="Canard, Bruno" sort="Canard, Bruno" uniqKey="Canard B" first="Bruno" last="Canard">Bruno Canard</name>
</author>
<author>
<name sortKey="Ziebuhr, John" sort="Ziebuhr, John" uniqKey="Ziebuhr J" first="John" last="Ziebuhr">John Ziebuhr</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cations, Divalent (chemistry)</term>
<term>Cell Nucleus (enzymology)</term>
<term>Cell Nucleus (genetics)</term>
<term>Conserved Sequence</term>
<term>Coronavirus (enzymology)</term>
<term>Coronavirus (genetics)</term>
<term>Coronavirus (physiology)</term>
<term>Exoribonucleases (chemistry)</term>
<term>Exoribonucleases (genetics)</term>
<term>Exoribonucleases (metabolism)</term>
<term>Metals (chemistry)</term>
<term>Metals (pharmacology)</term>
<term>Molecular Sequence Data</term>
<term>RNA, Double-Stranded (metabolism)</term>
<term>RNA, Viral (biosynthesis)</term>
<term>RNA, Viral (genetics)</term>
<term>Sequence Alignment</term>
<term>Substrate Specificity</term>
<term>Transcription, Genetic (genetics)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN double brin (métabolisme)</term>
<term>ARN viral (biosynthèse)</term>
<term>ARN viral (génétique)</term>
<term>Alignement de séquences</term>
<term>Cations divalents ()</term>
<term>Coronavirus (enzymologie)</term>
<term>Coronavirus (génétique)</term>
<term>Coronavirus (physiologie)</term>
<term>Données de séquences moléculaires</term>
<term>Exoribonucleases ()</term>
<term>Exoribonucleases (génétique)</term>
<term>Exoribonucleases (métabolisme)</term>
<term>Métaux ()</term>
<term>Métaux (pharmacologie)</term>
<term>Noyau de la cellule (enzymologie)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Réplication virale</term>
<term>Spécificité du substrat</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Transcription génétique (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cations, Divalent</term>
<term>Exoribonucleases</term>
<term>Metals</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>ARN viral</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Coronavirus</term>
<term>Noyau de la cellule</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cell Nucleus</term>
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Coronavirus</term>
<term>Exoribonucleases</term>
<term>RNA, Viral</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Coronavirus</term>
<term>Exoribonucleases</term>
<term>Noyau de la cellule</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Exoribonucleases</term>
<term>RNA, Double-Stranded</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN double brin</term>
<term>Exoribonucleases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Métaux</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Metals</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Conserved Sequence</term>
<term>Molecular Sequence Data</term>
<term>Sequence Alignment</term>
<term>Substrate Specificity</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Cations divalents</term>
<term>Données de séquences moléculaires</term>
<term>Exoribonucleases</term>
<term>Métaux</term>
<term>Réplication virale</term>
<term>Spécificité du substrat</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Replication of the giant RNA genome of severe acute respiratory syndrome (SARS) coronavirus (CoV) and synthesis of as many as eight subgenomic (sg) mRNAs are mediated by a viral replicase-transcriptase of outstanding complexity that includes an essential endoribonuclease activity. Here, we show that the CoV replicative machinery, unlike that of other RNA viruses, also uses an exoribonuclease (ExoN) activity, which is associated with nonstructural protein (nsp) 14. Bacterially expressed forms of SARS-CoV nsp14 were shown to act on both ssRNAs and dsRNAs in a 3'-->5' direction. The activity depended on residues that are conserved in the DEDD exonuclease superfamily. The protein did not hydrolyze DNA or ribose-2'-O-methylated RNA substrates and required divalent metal ions for activity. A range of 5'-labeled ssRNA substrates were processed to final products of approximately 8-12 nucleotides. When part of dsRNA or in the presence of nonlabeled dsRNA, the 5'-labeled RNA substrates were processed to significantly smaller products, indicating that binding to dsRNA in cis or trans modulates the exonucleolytic activity of nsp14. Characterization of human CoV 229E ExoN active-site mutants revealed severe defects in viral RNA synthesis, and no viable virus could be recovered. Besides strongly reduced genome replication, specific defects in sg RNA synthesis, such as aberrant sizes of specific sg RNAs and changes in the molar ratios between individual sg RNA species, were observed. Taken together, the study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16549795</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>103</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2006</Year>
<Month>Mar</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>5108-13</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Replication of the giant RNA genome of severe acute respiratory syndrome (SARS) coronavirus (CoV) and synthesis of as many as eight subgenomic (sg) mRNAs are mediated by a viral replicase-transcriptase of outstanding complexity that includes an essential endoribonuclease activity. Here, we show that the CoV replicative machinery, unlike that of other RNA viruses, also uses an exoribonuclease (ExoN) activity, which is associated with nonstructural protein (nsp) 14. Bacterially expressed forms of SARS-CoV nsp14 were shown to act on both ssRNAs and dsRNAs in a 3'-->5' direction. The activity depended on residues that are conserved in the DEDD exonuclease superfamily. The protein did not hydrolyze DNA or ribose-2'-O-methylated RNA substrates and required divalent metal ions for activity. A range of 5'-labeled ssRNA substrates were processed to final products of approximately 8-12 nucleotides. When part of dsRNA or in the presence of nonlabeled dsRNA, the 5'-labeled RNA substrates were processed to significantly smaller products, indicating that binding to dsRNA in cis or trans modulates the exonucleolytic activity of nsp14. Characterization of human CoV 229E ExoN active-site mutants revealed severe defects in viral RNA synthesis, and no viable virus could be recovered. Besides strongly reduced genome replication, specific defects in sg RNA synthesis, such as aberrant sizes of specific sg RNAs and changes in the molar ratios between individual sg RNA species, were observed. Taken together, the study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Minskaia</LastName>
<ForeName>Ekaterina</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institute of Virology and Immunology, University of Würzburg, 97078 Würzburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hertzig</LastName>
<ForeName>Tobias</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gorbalenya</LastName>
<ForeName>Alexander E</ForeName>
<Initials>AE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Campanacci</LastName>
<ForeName>Valérie</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cambillau</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Canard</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ziebuhr</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>03</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002413">Cations, Divalent</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008670">Metals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012330">RNA, Double-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005095">Exoribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002413" MajorTopicYN="N">Cations, Divalent</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005095" MajorTopicYN="N">Exoribonucleases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008670" MajorTopicYN="N">Metals</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012330" MajorTopicYN="N">RNA, Double-Stranded</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
<ArticleId IdType="pii">0508200103</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0508200103</ArticleId>
<ArticleId IdType="pmc">PMC1458802</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1995;380:499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Mar 1;29(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 Jun;82(Pt 6):1273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11369870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;494:1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):980-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Aug;7(4):412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Oct 15;343(2):305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15451662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1983;2(10):1839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6196191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):5110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Sep 1;26(17):4005-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9705512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 27;274(35):25151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Jan;239:233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14114849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):48702-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:57-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2005 Feb;107(2):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 15;280(15):15212-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):6620-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2002 Apr;10(4):535-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11937058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2003 Nov;148(11):2207-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14579179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 Dec;4(12):1150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14618157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 Dec 18;349(25):2431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Jun 10;260(11):7067-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3888994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 1;6(12):3779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3428275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Apr 8;240(4849):199-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2832946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Dec;85(23):8924-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3194400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Mar 7;28(5):1975-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2541768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Jan;10(1):17-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1989882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Jan;10(1):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1989886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8341661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1994;63:777-822</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7526780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 Feb;82(Pt 2):385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161278</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002304 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002304 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:16549795
   |texte=   Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:16549795" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021