Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.

Identifieur interne : 001C50 ( PubMed/Curation ); précédent : 001C49; suivant : 001C51

Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.

Auteurs : Xiaoyu Xue [République populaire de Chine] ; Hongwei Yu ; Haitao Yang ; Fei Xue ; Zhixin Wu ; Wei Shen ; Jun Li ; Zhe Zhou ; Yi Ding ; Qi Zhao ; Xuejun C. Zhang ; Ming Liao ; Mark Bartlam ; Zihe Rao

Source :

RBID : pubmed:18094151

Descripteurs français

English descriptors

Abstract

Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M(pro)), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) M(pro) and a severe acute respiratory syndrome CoV (SARS-CoV) M(pro) mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M(pro). A monomeric form of IBV M(pro) was identified for the first time in CoV M(pro) structures. A comparison of these two structures to other available M(pro) structures provides new insights for the design of substrate-based inhibitors targeting CoV M(pro)s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M(pro) and was found to demonstrate in vitro inactivation of IBV M(pro) and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M(pro).

DOI: 10.1128/JVI.02114-07
PubMed: 18094151

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18094151

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.</title>
<author>
<name sortKey="Xue, Xiaoyu" sort="Xue, Xiaoyu" uniqKey="Xue X" first="Xiaoyu" last="Xue">Xiaoyu Xue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Structural Biology, Life Sciences Building, Tsinghua University, Beijing 100084, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Structural Biology, Life Sciences Building, Tsinghua University, Beijing 100084</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Hongwei" sort="Yu, Hongwei" uniqKey="Yu H" first="Hongwei" last="Yu">Hongwei Yu</name>
</author>
<author>
<name sortKey="Yang, Haitao" sort="Yang, Haitao" uniqKey="Yang H" first="Haitao" last="Yang">Haitao Yang</name>
</author>
<author>
<name sortKey="Xue, Fei" sort="Xue, Fei" uniqKey="Xue F" first="Fei" last="Xue">Fei Xue</name>
</author>
<author>
<name sortKey="Wu, Zhixin" sort="Wu, Zhixin" uniqKey="Wu Z" first="Zhixin" last="Wu">Zhixin Wu</name>
</author>
<author>
<name sortKey="Shen, Wei" sort="Shen, Wei" uniqKey="Shen W" first="Wei" last="Shen">Wei Shen</name>
</author>
<author>
<name sortKey="Li, Jun" sort="Li, Jun" uniqKey="Li J" first="Jun" last="Li">Jun Li</name>
</author>
<author>
<name sortKey="Zhou, Zhe" sort="Zhou, Zhe" uniqKey="Zhou Z" first="Zhe" last="Zhou">Zhe Zhou</name>
</author>
<author>
<name sortKey="Ding, Yi" sort="Ding, Yi" uniqKey="Ding Y" first="Yi" last="Ding">Yi Ding</name>
</author>
<author>
<name sortKey="Zhao, Qi" sort="Zhao, Qi" uniqKey="Zhao Q" first="Qi" last="Zhao">Qi Zhao</name>
</author>
<author>
<name sortKey="Zhang, Xuejun C" sort="Zhang, Xuejun C" uniqKey="Zhang X" first="Xuejun C" last="Zhang">Xuejun C. Zhang</name>
</author>
<author>
<name sortKey="Liao, Ming" sort="Liao, Ming" uniqKey="Liao M" first="Ming" last="Liao">Ming Liao</name>
</author>
<author>
<name sortKey="Bartlam, Mark" sort="Bartlam, Mark" uniqKey="Bartlam M" first="Mark" last="Bartlam">Mark Bartlam</name>
</author>
<author>
<name sortKey="Rao, Zihe" sort="Rao, Zihe" uniqKey="Rao Z" first="Zihe" last="Rao">Zihe Rao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18094151</idno>
<idno type="pmid">18094151</idno>
<idno type="doi">10.1128/JVI.02114-07</idno>
<idno type="wicri:Area/PubMed/Corpus">001C50</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C50</idno>
<idno type="wicri:Area/PubMed/Curation">001C50</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001C50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.</title>
<author>
<name sortKey="Xue, Xiaoyu" sort="Xue, Xiaoyu" uniqKey="Xue X" first="Xiaoyu" last="Xue">Xiaoyu Xue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Structural Biology, Life Sciences Building, Tsinghua University, Beijing 100084, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Structural Biology, Life Sciences Building, Tsinghua University, Beijing 100084</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Hongwei" sort="Yu, Hongwei" uniqKey="Yu H" first="Hongwei" last="Yu">Hongwei Yu</name>
</author>
<author>
<name sortKey="Yang, Haitao" sort="Yang, Haitao" uniqKey="Yang H" first="Haitao" last="Yang">Haitao Yang</name>
</author>
<author>
<name sortKey="Xue, Fei" sort="Xue, Fei" uniqKey="Xue F" first="Fei" last="Xue">Fei Xue</name>
</author>
<author>
<name sortKey="Wu, Zhixin" sort="Wu, Zhixin" uniqKey="Wu Z" first="Zhixin" last="Wu">Zhixin Wu</name>
</author>
<author>
<name sortKey="Shen, Wei" sort="Shen, Wei" uniqKey="Shen W" first="Wei" last="Shen">Wei Shen</name>
</author>
<author>
<name sortKey="Li, Jun" sort="Li, Jun" uniqKey="Li J" first="Jun" last="Li">Jun Li</name>
</author>
<author>
<name sortKey="Zhou, Zhe" sort="Zhou, Zhe" uniqKey="Zhou Z" first="Zhe" last="Zhou">Zhe Zhou</name>
</author>
<author>
<name sortKey="Ding, Yi" sort="Ding, Yi" uniqKey="Ding Y" first="Yi" last="Ding">Yi Ding</name>
</author>
<author>
<name sortKey="Zhao, Qi" sort="Zhao, Qi" uniqKey="Zhao Q" first="Qi" last="Zhao">Qi Zhao</name>
</author>
<author>
<name sortKey="Zhang, Xuejun C" sort="Zhang, Xuejun C" uniqKey="Zhang X" first="Xuejun C" last="Zhang">Xuejun C. Zhang</name>
</author>
<author>
<name sortKey="Liao, Ming" sort="Liao, Ming" uniqKey="Liao M" first="Ming" last="Liao">Ming Liao</name>
</author>
<author>
<name sortKey="Bartlam, Mark" sort="Bartlam, Mark" uniqKey="Bartlam M" first="Mark" last="Bartlam">Mark Bartlam</name>
</author>
<author>
<name sortKey="Rao, Zihe" sort="Rao, Zihe" uniqKey="Rao Z" first="Zihe" last="Rao">Zihe Rao</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Antiviral Agents (chemistry)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Base Sequence</term>
<term>Coronavirus (drug effects)</term>
<term>Coronavirus (enzymology)</term>
<term>Crystallization</term>
<term>DNA Primers</term>
<term>Drug Design</term>
<term>Molecular Sequence Data</term>
<term>Peptide Hydrolases (chemistry)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Protein Conformation</term>
<term>Sequence Homology, Amino Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amorces ADN</term>
<term>Antiviraux ()</term>
<term>Antiviraux (pharmacologie)</term>
<term>Conception de médicament</term>
<term>Conformation des protéines</term>
<term>Coronavirus ()</term>
<term>Coronavirus (enzymologie)</term>
<term>Cristallisation</term>
<term>Données de séquences moléculaires</term>
<term>Peptide hydrolases ()</term>
<term>Peptide hydrolases (métabolisme)</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antiviral Agents</term>
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peptide hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Crystallization</term>
<term>DNA Primers</term>
<term>Drug Design</term>
<term>Molecular Sequence Data</term>
<term>Protein Conformation</term>
<term>Sequence Homology, Amino Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amorces ADN</term>
<term>Antiviraux</term>
<term>Conception de médicament</term>
<term>Conformation des protéines</term>
<term>Coronavirus</term>
<term>Cristallisation</term>
<term>Données de séquences moléculaires</term>
<term>Peptide hydrolases</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M(pro)), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) M(pro) and a severe acute respiratory syndrome CoV (SARS-CoV) M(pro) mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M(pro). A monomeric form of IBV M(pro) was identified for the first time in CoV M(pro) structures. A comparison of these two structures to other available M(pro) structures provides new insights for the design of substrate-based inhibitors targeting CoV M(pro)s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M(pro) and was found to demonstrate in vitro inactivation of IBV M(pro) and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M(pro).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18094151</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>03</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2008</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.</ArticleTitle>
<Pagination>
<MedlinePgn>2515-27</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M(pro)), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) M(pro) and a severe acute respiratory syndrome CoV (SARS-CoV) M(pro) mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M(pro). A monomeric form of IBV M(pro) was identified for the first time in CoV M(pro) structures. A comparison of these two structures to other available M(pro) structures provides new insights for the design of substrate-based inhibitors targeting CoV M(pro)s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M(pro) and was found to demonstrate in vitro inactivation of IBV M(pro) and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M(pro).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Xiaoyu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Structural Biology, Life Sciences Building, Tsinghua University, Beijing 100084, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Hongwei</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Haitao</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Zhixin</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Zhe</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xuejun C</ForeName>
<Initials>XC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bartlam</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rao</LastName>
<ForeName>Zihe</ForeName>
<Initials>Z</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>12</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015195" MajorTopicYN="Y">Drug Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18094151</ArticleId>
<ArticleId IdType="pii">JVI.02114-07</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.02114-07</ArticleId>
<ArticleId IdType="pmc">PMC2258912</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):849-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Sci Tech. 2000 Aug;19(2):493-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10935276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2000 Aug;56(Pt 8):965-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10944333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jul 1;21(13):3213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 2):1772-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2003 Dec;32(6):567-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23):24765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:57-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Oct;3(10):e324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16128623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Nov 11;353(5):1137-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Jan 1;63(Pt 1):24-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Feb 23;366(3):965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Feb;180(2):567-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Jun 26;17(12):4847-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2526320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Apr 15;77(1):61-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2744488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1981 Mar 12;290(5802):107-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28769131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 1973 Jan-Mar;17(1):227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4572571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1984 Jul;3(7):1451-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6540172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001C50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:18094151
   |texte=   Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:18094151" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021