Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.

Identifieur interne : 001702 ( PubMed/Curation ); précédent : 001701; suivant : 001703

Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.

Auteurs : Lance D. Eckerle [États-Unis] ; Michelle M. Becker ; Rebecca A. Halpin ; Kelvin Li ; Eli Venter ; Xiaotao Lu ; Sana Scherbakova ; Rachel L. Graham ; Ralph S. Baric ; Timothy B. Stockwell ; David J. Spiro ; Mark R. Denison

Source :

RBID : pubmed:20463816

Descripteurs français

English descriptors

Abstract

Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution.

DOI: 10.1371/journal.ppat.1000896
PubMed: 20463816

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20463816

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.</title>
<author>
<name sortKey="Eckerle, Lance D" sort="Eckerle, Lance D" uniqKey="Eckerle L" first="Lance D" last="Eckerle">Lance D. Eckerle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Becker, Michelle M" sort="Becker, Michelle M" uniqKey="Becker M" first="Michelle M" last="Becker">Michelle M. Becker</name>
</author>
<author>
<name sortKey="Halpin, Rebecca A" sort="Halpin, Rebecca A" uniqKey="Halpin R" first="Rebecca A" last="Halpin">Rebecca A. Halpin</name>
</author>
<author>
<name sortKey="Li, Kelvin" sort="Li, Kelvin" uniqKey="Li K" first="Kelvin" last="Li">Kelvin Li</name>
</author>
<author>
<name sortKey="Venter, Eli" sort="Venter, Eli" uniqKey="Venter E" first="Eli" last="Venter">Eli Venter</name>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
</author>
<author>
<name sortKey="Scherbakova, Sana" sort="Scherbakova, Sana" uniqKey="Scherbakova S" first="Sana" last="Scherbakova">Sana Scherbakova</name>
</author>
<author>
<name sortKey="Graham, Rachel L" sort="Graham, Rachel L" uniqKey="Graham R" first="Rachel L" last="Graham">Rachel L. Graham</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
<author>
<name sortKey="Stockwell, Timothy B" sort="Stockwell, Timothy B" uniqKey="Stockwell T" first="Timothy B" last="Stockwell">Timothy B. Stockwell</name>
</author>
<author>
<name sortKey="Spiro, David J" sort="Spiro, David J" uniqKey="Spiro D" first="David J" last="Spiro">David J. Spiro</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20463816</idno>
<idno type="pmid">20463816</idno>
<idno type="doi">10.1371/journal.ppat.1000896</idno>
<idno type="wicri:Area/PubMed/Corpus">001702</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001702</idno>
<idno type="wicri:Area/PubMed/Curation">001702</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001702</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.</title>
<author>
<name sortKey="Eckerle, Lance D" sort="Eckerle, Lance D" uniqKey="Eckerle L" first="Lance D" last="Eckerle">Lance D. Eckerle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Becker, Michelle M" sort="Becker, Michelle M" uniqKey="Becker M" first="Michelle M" last="Becker">Michelle M. Becker</name>
</author>
<author>
<name sortKey="Halpin, Rebecca A" sort="Halpin, Rebecca A" uniqKey="Halpin R" first="Rebecca A" last="Halpin">Rebecca A. Halpin</name>
</author>
<author>
<name sortKey="Li, Kelvin" sort="Li, Kelvin" uniqKey="Li K" first="Kelvin" last="Li">Kelvin Li</name>
</author>
<author>
<name sortKey="Venter, Eli" sort="Venter, Eli" uniqKey="Venter E" first="Eli" last="Venter">Eli Venter</name>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
</author>
<author>
<name sortKey="Scherbakova, Sana" sort="Scherbakova, Sana" uniqKey="Scherbakova S" first="Sana" last="Scherbakova">Sana Scherbakova</name>
</author>
<author>
<name sortKey="Graham, Rachel L" sort="Graham, Rachel L" uniqKey="Graham R" first="Rachel L" last="Graham">Rachel L. Graham</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
<author>
<name sortKey="Stockwell, Timothy B" sort="Stockwell, Timothy B" uniqKey="Stockwell T" first="Timothy B" last="Stockwell">Timothy B. Stockwell</name>
</author>
<author>
<name sortKey="Spiro, David J" sort="Spiro, David J" uniqKey="Spiro D" first="David J" last="Spiro">David J. Spiro</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Evolution, Molecular</term>
<term>Exoribonucleases (genetics)</term>
<term>Genetic Engineering</term>
<term>Genetic Variation</term>
<term>Genome, Viral</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Polymorphism, Single Nucleotide</term>
<term>SARS Virus (enzymology)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (growth & development)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Vero Cells</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Virus Replication (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Données de séquences moléculaires</term>
<term>Exoribonucleases (génétique)</term>
<term>Génie génétique</term>
<term>Génome viral</term>
<term>Modèles génétiques</term>
<term>Mutation</term>
<term>Phénotype</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Protéines virales non structurales (génétique)</term>
<term>Réplication virale (génétique)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Séquence d'acides aminés</term>
<term>Variation génétique</term>
<term>Virus du SRAS (croissance et développement)</term>
<term>Virus du SRAS (enzymologie)</term>
<term>Virus du SRAS (génétique)</term>
<term>Évolution moléculaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Exoribonucleases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Exoribonucleases</term>
<term>Protéines virales non structurales</term>
<term>Réplication virale</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Evolution, Molecular</term>
<term>Genetic Engineering</term>
<term>Genetic Variation</term>
<term>Genome, Viral</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Données de séquences moléculaires</term>
<term>Génie génétique</term>
<term>Génome viral</term>
<term>Modèles génétiques</term>
<term>Mutation</term>
<term>Phénotype</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Séquence d'acides aminés</term>
<term>Variation génétique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20463816</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>08</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2010</Year>
<Month>May</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.</ArticleTitle>
<Pagination>
<MedlinePgn>e1000896</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1000896</ELocationID>
<Abstract>
<AbstractText>Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Eckerle</LastName>
<ForeName>Lance D</ForeName>
<Initials>LD</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Becker</LastName>
<ForeName>Michelle M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Halpin</LastName>
<ForeName>Rebecca A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Kelvin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Venter</LastName>
<ForeName>Eli</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Xiaotao</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scherbakova</LastName>
<ForeName>Sana</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Graham</LastName>
<ForeName>Rachel L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stockwell</LastName>
<ForeName>Timothy B</ForeName>
<Initials>TB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Spiro</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Denison</LastName>
<ForeName>Mark R</ForeName>
<Initials>MR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F32-AI080148</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI026603</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI059443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN272200900007C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-AI026603</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI049824</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01-AI059443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN272200900007C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32-AI049824</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA068485</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>N01AI30071</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>F32 AI080148</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA68485</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54-AI057157</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 AI057157</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.56</RegistryNumber>
<NameOfSubstance UI="C525596">nsp14 protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005095">Exoribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005095" MajorTopicYN="N">Exoribonucleases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="Y">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="Y">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20463816</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1000896</ArticleId>
<ArticleId IdType="pmc">PMC2865531</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biochem Mol Biol. 2007 Sep 30;40(5):649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Feb;14(2):154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18246077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18405373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(5):e459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17520018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Aug;17(8):1195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Oct;190(19):6290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18676670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Nov 6;456(7218):53-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2009 Mar;46(3):229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19317667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(5):e5683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19479085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19592482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Oct;183(2):747-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19652180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Nov;5(11):e1000658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19911056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):127-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13910-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2000 Dec;6(12):1375-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11100123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Viral Hepat. 2003 Nov;10(6):413-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14633173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):980-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9837-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1978 Apr;13(4):735-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">657273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Sep;85(18):6811-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2842792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Aug;64(8):3960-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1695258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Jun;65(6):2960-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2033662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1831267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1995;380:499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):5110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:31-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2005 Feb;107(2):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2005 Aug;76(4):435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15977248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 8;280(27):25706-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15878882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(21):13399-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(23):14909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2005 Nov;1(6):e61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jan 19;439(7074):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16327776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2006 Apr;117(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2005 Oct;1(2):e11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16220146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Nov;87(Pt 11):3349-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17030869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Oct 18;25(20):4933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17024178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(6):2930-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 10;360(2):469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17134731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 May;82(Pt 5):1049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11371613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Sep 9;42(35):10462-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12950173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Oct;77(19):10515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):11722-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699579</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001702 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001702 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:20463816
   |texte=   Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:20463816" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021