Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Avian coronavirus spike glycoprotein ectodomain shows a low codon adaptation to Gallus gallus with virus-exclusive codons in strategic amino acids positions.

Identifieur interne : 001316 ( PubMed/Curation ); précédent : 001315; suivant : 001317

Avian coronavirus spike glycoprotein ectodomain shows a low codon adaptation to Gallus gallus with virus-exclusive codons in strategic amino acids positions.

Auteurs : Paulo E. Brandão [Brésil]

Source :

RBID : pubmed:22903606

Descripteurs français

English descriptors

Abstract

This is a study on the Avian coronavirus IBV and chicken host-relationship from the codon usage point of view based on fifty-nine non-redundant IBV S1 sequences (nt 1-507) from strains detected worldwide and chicken tissue-specific protein genes sequences from IBV-replicating sites. The effective number of codons (ENC) values ranged from 36 to 47.8, indicating a high-to-moderate codon usage bias. The highest IBV codon adaptation index (CAI) value was 0.7, indicating a distant virus versus host synonymous codons usage. The ENC × GC3 % curve indicates that both mutational pressure and natural selection are the driving forces on codon usage pattern in S1. The low CAI values agree with a low S protein expression and considering that S protein is a determinant for attachment and neutralization, this could be a further mechanism besides mRNA transcription attenuation for a low expression of this protein leading to an immune camouflage.

DOI: 10.1007/s00239-012-9515-2
PubMed: 22903606

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22903606

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Avian coronavirus spike glycoprotein ectodomain shows a low codon adaptation to Gallus gallus with virus-exclusive codons in strategic amino acids positions.</title>
<author>
<name sortKey="Brandao, Paulo E" sort="Brandao, Paulo E" uniqKey="Brandao P" first="Paulo E" last="Brandão">Paulo E. Brandão</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Brazil. paulo7926@usp.br</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22903606</idno>
<idno type="pmid">22903606</idno>
<idno type="doi">10.1007/s00239-012-9515-2</idno>
<idno type="wicri:Area/PubMed/Corpus">001316</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001316</idno>
<idno type="wicri:Area/PubMed/Curation">001316</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001316</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Avian coronavirus spike glycoprotein ectodomain shows a low codon adaptation to Gallus gallus with virus-exclusive codons in strategic amino acids positions.</title>
<author>
<name sortKey="Brandao, Paulo E" sort="Brandao, Paulo E" uniqKey="Brandao P" first="Paulo E" last="Brandão">Paulo E. Brandão</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Brazil. paulo7926@usp.br</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular evolution</title>
<idno type="eISSN">1432-1432</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Chickens (virology)</term>
<term>Codon</term>
<term>Coronavirus (genetics)</term>
<term>Genetic Drift</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Models, Genetic</term>
<term>Phylogeny</term>
<term>Selection, Genetic</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Codon</term>
<term>Coronavirus (génétique)</term>
<term>Dérive génétique</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (génétique)</term>
<term>Modèles génétiques</term>
<term>Phylogénie</term>
<term>Poulets (virologie)</term>
<term>Protéines de l'enveloppe virale (génétique)</term>
<term>Sélection génétique</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Codon</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus</term>
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Poulets</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Chickens</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Genetic Drift</term>
<term>Models, Genetic</term>
<term>Phylogeny</term>
<term>Selection, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Codon</term>
<term>Dérive génétique</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Modèles génétiques</term>
<term>Phylogénie</term>
<term>Sélection génétique</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This is a study on the Avian coronavirus IBV and chicken host-relationship from the codon usage point of view based on fifty-nine non-redundant IBV S1 sequences (nt 1-507) from strains detected worldwide and chicken tissue-specific protein genes sequences from IBV-replicating sites. The effective number of codons (ENC) values ranged from 36 to 47.8, indicating a high-to-moderate codon usage bias. The highest IBV codon adaptation index (CAI) value was 0.7, indicating a distant virus versus host synonymous codons usage. The ENC × GC3 % curve indicates that both mutational pressure and natural selection are the driving forces on codon usage pattern in S1. The low CAI values agree with a low S protein expression and considering that S protein is a determinant for attachment and neutralization, this could be a further mechanism besides mRNA transcription attenuation for a low expression of this protein leading to an immune camouflage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22903606</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1432</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>75</Volume>
<Issue>1-2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of molecular evolution</Title>
<ISOAbbreviation>J. Mol. Evol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Avian coronavirus spike glycoprotein ectodomain shows a low codon adaptation to Gallus gallus with virus-exclusive codons in strategic amino acids positions.</ArticleTitle>
<Pagination>
<MedlinePgn>19-24</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00239-012-9515-2</ELocationID>
<Abstract>
<AbstractText>This is a study on the Avian coronavirus IBV and chicken host-relationship from the codon usage point of view based on fifty-nine non-redundant IBV S1 sequences (nt 1-507) from strains detected worldwide and chicken tissue-specific protein genes sequences from IBV-replicating sites. The effective number of codons (ENC) values ranged from 36 to 47.8, indicating a high-to-moderate codon usage bias. The highest IBV codon adaptation index (CAI) value was 0.7, indicating a distant virus versus host synonymous codons usage. The ENC × GC3 % curve indicates that both mutational pressure and natural selection are the driving forces on codon usage pattern in S1. The low CAI values agree with a low S protein expression and considering that S protein is a determinant for attachment and neutralization, this could be a further mechanism besides mRNA transcription attenuation for a low expression of this protein leading to an immune camouflage.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brandão</LastName>
<ForeName>Paulo E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Brazil. paulo7926@usp.br</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Mol Evol</MedlineTA>
<NlmUniqueID>0360051</NlmUniqueID>
<ISSNLinking>0022-2844</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003062">Codon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="N">Chickens</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003062" MajorTopicYN="N">Codon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040961" MajorTopicYN="N">Genetic Drift</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="N">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22903606</ArticleId>
<ArticleId IdType="doi">10.1007/s00239-012-9515-2</ArticleId>
<ArticleId IdType="pmc">PMC7079877</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 1997;142(11):2249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9672590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Feb 11;15(3):1281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3547335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2010 Jun;54(2):894-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20608535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Dec;18(6):499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Dec 20;369(2):431-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17881030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2004 May;101(2):155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15041183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2009 Feb;38(1):41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19156578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 2007 Mar-Apr;38(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17296157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1991 Nov;129(3):897-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1752426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Aug 1;65(Pt 8):788-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19652340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2011 Apr;40(2):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21500035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Dec;69(12):7851-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7494297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2008 Apr;10(4):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18396435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Mar 1;87(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2110097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformation. 2007 Oct 06;2(2):62-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18188422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2012 Jun;44(3):475-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22395914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br Poult Sci. 2010 Feb;51(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20390564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1998 Sep;47(3):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9732453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2011 Jun;40(3):223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21711181</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001316 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001316 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:22903606
   |texte=   Avian coronavirus spike glycoprotein ectodomain shows a low codon adaptation to Gallus gallus with virus-exclusive codons in strategic amino acids positions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:22903606" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021