Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus.

Identifieur interne : 001315 ( PubMed/Curation ); précédent : 001314; suivant : 001316

Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus.

Auteurs : Masaya Fukushi [Japon] ; Yoshiyuki Yoshinaka ; Yusuke Matsuoka ; Seisuke Hatakeyama ; Yukihito Ishizaka ; Teruo Kirikae ; Takehiko Sasazuki ; Tohru Miyoshi-Akiyama

Source :

RBID : pubmed:22915798

Descripteurs français

English descriptors

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV.

DOI: 10.1128/JVI.01250-12
PubMed: 22915798

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22915798

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Fukushi, Masaya" sort="Fukushi, Masaya" uniqKey="Fukushi M" first="Masaya" last="Fukushi">Masaya Fukushi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan. mfukushi@hiroshima-u.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yoshinaka, Yoshiyuki" sort="Yoshinaka, Yoshiyuki" uniqKey="Yoshinaka Y" first="Yoshiyuki" last="Yoshinaka">Yoshiyuki Yoshinaka</name>
</author>
<author>
<name sortKey="Matsuoka, Yusuke" sort="Matsuoka, Yusuke" uniqKey="Matsuoka Y" first="Yusuke" last="Matsuoka">Yusuke Matsuoka</name>
</author>
<author>
<name sortKey="Hatakeyama, Seisuke" sort="Hatakeyama, Seisuke" uniqKey="Hatakeyama S" first="Seisuke" last="Hatakeyama">Seisuke Hatakeyama</name>
</author>
<author>
<name sortKey="Ishizaka, Yukihito" sort="Ishizaka, Yukihito" uniqKey="Ishizaka Y" first="Yukihito" last="Ishizaka">Yukihito Ishizaka</name>
</author>
<author>
<name sortKey="Kirikae, Teruo" sort="Kirikae, Teruo" uniqKey="Kirikae T" first="Teruo" last="Kirikae">Teruo Kirikae</name>
</author>
<author>
<name sortKey="Sasazuki, Takehiko" sort="Sasazuki, Takehiko" uniqKey="Sasazuki T" first="Takehiko" last="Sasazuki">Takehiko Sasazuki</name>
</author>
<author>
<name sortKey="Miyoshi Akiyama, Tohru" sort="Miyoshi Akiyama, Tohru" uniqKey="Miyoshi Akiyama T" first="Tohru" last="Miyoshi-Akiyama">Tohru Miyoshi-Akiyama</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22915798</idno>
<idno type="pmid">22915798</idno>
<idno type="doi">10.1128/JVI.01250-12</idno>
<idno type="wicri:Area/PubMed/Corpus">001315</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001315</idno>
<idno type="wicri:Area/PubMed/Curation">001315</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001315</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Fukushi, Masaya" sort="Fukushi, Masaya" uniqKey="Fukushi M" first="Masaya" last="Fukushi">Masaya Fukushi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan. mfukushi@hiroshima-u.ac.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yoshinaka, Yoshiyuki" sort="Yoshinaka, Yoshiyuki" uniqKey="Yoshinaka Y" first="Yoshiyuki" last="Yoshinaka">Yoshiyuki Yoshinaka</name>
</author>
<author>
<name sortKey="Matsuoka, Yusuke" sort="Matsuoka, Yusuke" uniqKey="Matsuoka Y" first="Yusuke" last="Matsuoka">Yusuke Matsuoka</name>
</author>
<author>
<name sortKey="Hatakeyama, Seisuke" sort="Hatakeyama, Seisuke" uniqKey="Hatakeyama S" first="Seisuke" last="Hatakeyama">Seisuke Hatakeyama</name>
</author>
<author>
<name sortKey="Ishizaka, Yukihito" sort="Ishizaka, Yukihito" uniqKey="Ishizaka Y" first="Yukihito" last="Ishizaka">Yukihito Ishizaka</name>
</author>
<author>
<name sortKey="Kirikae, Teruo" sort="Kirikae, Teruo" uniqKey="Kirikae T" first="Teruo" last="Kirikae">Teruo Kirikae</name>
</author>
<author>
<name sortKey="Sasazuki, Takehiko" sort="Sasazuki, Takehiko" uniqKey="Sasazuki T" first="Takehiko" last="Sasazuki">Takehiko Sasazuki</name>
</author>
<author>
<name sortKey="Miyoshi Akiyama, Tohru" sort="Miyoshi Akiyama, Tohru" uniqKey="Miyoshi Akiyama T" first="Tohru" last="Miyoshi-Akiyama">Tohru Miyoshi-Akiyama</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Calnexin (metabolism)</term>
<term>Cell Line</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Glycosylation</term>
<term>Humans</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Protein Binding</term>
<term>Protein Processing, Post-Translational</term>
<term>SARS Virus (pathogenicity)</term>
<term>SARS Virus (physiology)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Calnexine (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires (métabolisme)</term>
<term>Glycosylation</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Protéines de l'enveloppe virale (métabolisme)</term>
<term>Réplication virale</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Souris</term>
<term>Virus du SRAS (pathogénicité)</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calnexin</term>
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endoplasmic Reticulum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calnexine</term>
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
<term>Réticulum endoplasmique</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Glycosylation</term>
<term>Humans</term>
<term>Mice</term>
<term>Protein Binding</term>
<term>Protein Processing, Post-Translational</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycosylation</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Réplication virale</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22915798</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>11745-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01250-12</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fukushi</LastName>
<ForeName>Masaya</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan. mfukushi@hiroshima-u.ac.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yoshinaka</LastName>
<ForeName>Yoshiyuki</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matsuoka</LastName>
<ForeName>Yusuke</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hatakeyama</LastName>
<ForeName>Seisuke</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ishizaka</LastName>
<ForeName>Yukihito</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kirikae</LastName>
<ForeName>Teruo</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sasazuki</LastName>
<ForeName>Takehiko</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miyoshi-Akiyama</LastName>
<ForeName>Tohru</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>08</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>139873-08-8</RegistryNumber>
<NameOfSubstance UI="D037281">Calnexin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037281" MajorTopicYN="N">Calnexin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22915798</ArticleId>
<ArticleId IdType="pii">JVI.01250-12</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01250-12</ArticleId>
<ArticleId IdType="pmc">PMC3486308</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cloning Stem Cells. 2002;4(1):91-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12006160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Nov;22(21):7398-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12370287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Feb 28;299(5611):1394-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12610305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2004;73:1019-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Jul 1;324(2):273-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15207615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(19):10628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tissue Antigens. 2004 Nov;64(5):600-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Oct 15;266(29):19599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1918067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Jul;126(1):41-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8027184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Mar;5(3):253-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8049518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 6;270(1):244-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7814381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Jun 23;430(1-2):17-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9678587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Nov 27;440(1-2):89-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11878-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10518544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Jan 21;326(3):554-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18153-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15601777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2005;245:91-121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16125546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Apr;87(Pt 4):861-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16528036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jul 5;350(2):358-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2007;25:443-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17243893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2007 Oct;87(4):1377-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):12029-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10221-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18303019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7809-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18490652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Apr 10;399(2):257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20129637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2010 Jul;18(7):323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20452219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Sep;84(17):8753-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):9677-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2011 Jun 1;203(11):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Apr 4;31(7):1823-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22314232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2012 Jul;13(7):448-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 28;302(5650):1504-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 30;314(1):235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2002 Jan;1(1):65-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001315 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001315 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:22915798
   |texte=   Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:22915798" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021