Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome.

Identifieur interne : 000F44 ( PubMed/Curation ); précédent : 000F43; suivant : 000F45

SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome.

Auteurs : Chong-Shan Shi [États-Unis] ; Hai-Yan Qi [États-Unis] ; Cedric Boularan [États-Unis] ; Ning-Na Huang [États-Unis] ; Mones Abu-Asab [États-Unis] ; James H. Shelhamer [États-Unis] ; John H. Kehrl [États-Unis]

Source :

RBID : pubmed:25135833

Descripteurs français

English descriptors

Abstract

Coronaviruses (CoV) have recently emerged as potentially serious pathogens that can cause significant human morbidity and death. The severe acute respiratory syndrome (SARS)-CoV was identified as the etiologic agent of the 2002-2003 international SARS outbreak. Yet, how SARS evades innate immune responses to cause human disease remains poorly understood. In this study, we show that a protein encoded by SARS-CoV designated as open reading frame-9b (ORF-9b) localizes to mitochondria and causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1, a host protein involved in mitochondrial fission. Also, acting on mitochondria, ORF-9b targets the mitochondrial-associated adaptor molecule MAVS signalosome by usurping PCBP2 and the HECT domain E3 ligase AIP4 to trigger the degradation of MAVS, TRAF3, and TRAF 6. This severely limits host cell IFN responses. Reducing either PCBP2 or AIP4 expression substantially reversed the ORF-9b-mediated reduction of MAVS and the suppression of antiviral transcriptional responses. Finally, transient ORF-9b expression led to a strong induction of autophagy in cells. The induction of autophagy depended upon ATG5, a critical autophagy regulator, but the inhibition of MAVS signaling did not. These results indicate that SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function to help evade host innate immunity. This study has uncovered an important clue to the pathogenesis of SARS-CoV infection and illustrates the havoc that a small ORF can cause in cells.

DOI: 10.4049/jimmunol.1303196
PubMed: 25135833

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25135833

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome.</title>
<author>
<name sortKey="Shi, Chong Shan" sort="Shi, Chong Shan" uniqKey="Shi C" first="Chong-Shan" last="Shi">Chong-Shan Shi</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Qi, Hai Yan" sort="Qi, Hai Yan" uniqKey="Qi H" first="Hai-Yan" last="Qi">Hai-Yan Qi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Critical Care Medicine Department, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Boularan, Cedric" sort="Boularan, Cedric" uniqKey="Boularan C" first="Cedric" last="Boularan">Cedric Boularan</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ning Na" sort="Huang, Ning Na" uniqKey="Huang N" first="Ning-Na" last="Huang">Ning-Na Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Abu Asab, Mones" sort="Abu Asab, Mones" uniqKey="Abu Asab M" first="Mones" last="Abu-Asab">Mones Abu-Asab</name>
<affiliation wicri:level="2">
<nlm:affiliation>Immunopathology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Immunopathology Section, National Eye Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shelhamer, James H" sort="Shelhamer, James H" uniqKey="Shelhamer J" first="James H" last="Shelhamer">James H. Shelhamer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Critical Care Medicine Department, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kehrl, John H" sort="Kehrl, John H" uniqKey="Kehrl J" first="John H" last="Kehrl">John H. Kehrl</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; jkehrl@niaid.nih.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25135833</idno>
<idno type="pmid">25135833</idno>
<idno type="doi">10.4049/jimmunol.1303196</idno>
<idno type="wicri:Area/PubMed/Corpus">000F44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F44</idno>
<idno type="wicri:Area/PubMed/Curation">000F44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000F44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome.</title>
<author>
<name sortKey="Shi, Chong Shan" sort="Shi, Chong Shan" uniqKey="Shi C" first="Chong-Shan" last="Shi">Chong-Shan Shi</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Qi, Hai Yan" sort="Qi, Hai Yan" uniqKey="Qi H" first="Hai-Yan" last="Qi">Hai-Yan Qi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Critical Care Medicine Department, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Boularan, Cedric" sort="Boularan, Cedric" uniqKey="Boularan C" first="Cedric" last="Boularan">Cedric Boularan</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ning Na" sort="Huang, Ning Na" uniqKey="Huang N" first="Ning-Na" last="Huang">Ning-Na Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Abu Asab, Mones" sort="Abu Asab, Mones" uniqKey="Abu Asab M" first="Mones" last="Abu-Asab">Mones Abu-Asab</name>
<affiliation wicri:level="2">
<nlm:affiliation>Immunopathology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Immunopathology Section, National Eye Institute, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shelhamer, James H" sort="Shelhamer, James H" uniqKey="Shelhamer J" first="James H" last="Shelhamer">James H. Shelhamer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Critical Care Medicine Department, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kehrl, John H" sort="Kehrl, John H" uniqKey="Kehrl J" first="John H" last="Kehrl">John H. Kehrl</name>
<affiliation wicri:level="2">
<nlm:affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; jkehrl@niaid.nih.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of immunology (Baltimore, Md. : 1950)</title>
<idno type="eISSN">1550-6606</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Autophagy (genetics)</term>
<term>Autophagy-Related Protein 5</term>
<term>Cell Line</term>
<term>GTP Phosphohydrolases (genetics)</term>
<term>GTP Phosphohydrolases (metabolism)</term>
<term>Green Fluorescent Proteins</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Immunity, Innate (genetics)</term>
<term>Microtubule-Associated Proteins (biosynthesis)</term>
<term>Microtubule-Associated Proteins (genetics)</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Mitochondria (genetics)</term>
<term>Mitochondria (immunology)</term>
<term>Mitochondria (virology)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Open Reading Frames (genetics)</term>
<term>Open Reading Frames (immunology)</term>
<term>RNA Interference</term>
<term>RNA, Small Interfering</term>
<term>RNA-Binding Proteins (biosynthesis)</term>
<term>RNA-Binding Proteins (genetics)</term>
<term>Repressor Proteins (biosynthesis)</term>
<term>Repressor Proteins (genetics)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (immunology)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>TNF Receptor-Associated Factor 3 (metabolism)</term>
<term>TNF Receptor-Associated Factor 6 (metabolism)</term>
<term>Ubiquitin-Protein Ligases (biosynthesis)</term>
<term>Ubiquitin-Protein Ligases (genetics)</term>
<term>Ubiquitination</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (génétique)</term>
<term>Cadres ouverts de lecture (génétique)</term>
<term>Cadres ouverts de lecture (immunologie)</term>
<term>Cellules HEK293</term>
<term>Facteur-3 associé aux récepteurs de TNF (métabolisme)</term>
<term>Facteur-6 associé aux récepteurs de TNF (métabolisme)</term>
<term>Humains</term>
<term>Immunité innée (génétique)</term>
<term>Interférence par ARN</term>
<term>Lignée cellulaire</term>
<term>Mitochondries (génétique)</term>
<term>Mitochondries (immunologie)</term>
<term>Mitochondries (virologie)</term>
<term>Petit ARN interférent</term>
<term>Protéine-5 associée à l'autophagie</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines associées aux microtubules (biosynthèse)</term>
<term>Protéines associées aux microtubules (génétique)</term>
<term>Protéines associées aux microtubules (métabolisme)</term>
<term>Protéines de liaison à l'ARN (biosynthèse)</term>
<term>Protéines de liaison à l'ARN (génétique)</term>
<term>Protéines de répression (biosynthèse)</term>
<term>Protéines de répression (génétique)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Protéines virales (génétique)</term>
<term>Protéines virales (immunologie)</term>
<term>Protéines à fluorescence verte</term>
<term>Syndrome respiratoire aigu sévère (immunologie)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Ubiquitin-protein ligases (biosynthèse)</term>
<term>Ubiquitin-protein ligases (génétique)</term>
<term>Ubiquitinylation</term>
<term>Virus du SRAS (génétique)</term>
<term>Virus du SRAS (immunologie)</term>
<term>dGTPases (génétique)</term>
<term>dGTPases (métabolisme)</term>
<term>Échappement immunitaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Microtubule-Associated Proteins</term>
<term>RNA-Binding Proteins</term>
<term>Repressor Proteins</term>
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>GTP Phosphohydrolases</term>
<term>Microtubule-Associated Proteins</term>
<term>Mitochondrial Proteins</term>
<term>RNA-Binding Proteins</term>
<term>Repressor Proteins</term>
<term>Ubiquitin-Protein Ligases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>GTP Phosphohydrolases</term>
<term>Microtubule-Associated Proteins</term>
<term>Mitochondrial Proteins</term>
<term>TNF Receptor-Associated Factor 3</term>
<term>TNF Receptor-Associated Factor 6</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Protéines associées aux microtubules</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines de répression</term>
<term>Ubiquitin-protein ligases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Autophagy</term>
<term>Immunity, Innate</term>
<term>Mitochondria</term>
<term>Open Reading Frames</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Autophagie</term>
<term>Cadres ouverts de lecture</term>
<term>Immunité innée</term>
<term>Mitochondries</term>
<term>Protéines associées aux microtubules</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines de répression</term>
<term>Protéines mitochondriales</term>
<term>Protéines virales</term>
<term>Ubiquitin-protein ligases</term>
<term>Virus du SRAS</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Cadres ouverts de lecture</term>
<term>Mitochondries</term>
<term>Protéines virales</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Mitochondria</term>
<term>Open Reading Frames</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur-3 associé aux récepteurs de TNF</term>
<term>Facteur-6 associé aux récepteurs de TNF</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines associées aux microtubules</term>
<term>Protéines mitochondriales</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Mitochondries</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Mitochondria</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Autophagy-Related Protein 5</term>
<term>Cell Line</term>
<term>Green Fluorescent Proteins</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>RNA Interference</term>
<term>RNA, Small Interfering</term>
<term>Ubiquitination</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HEK293</term>
<term>Humains</term>
<term>Interférence par ARN</term>
<term>Lignée cellulaire</term>
<term>Petit ARN interférent</term>
<term>Protéine-5 associée à l'autophagie</term>
<term>Protéines à fluorescence verte</term>
<term>Ubiquitinylation</term>
<term>Échappement immunitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses (CoV) have recently emerged as potentially serious pathogens that can cause significant human morbidity and death. The severe acute respiratory syndrome (SARS)-CoV was identified as the etiologic agent of the 2002-2003 international SARS outbreak. Yet, how SARS evades innate immune responses to cause human disease remains poorly understood. In this study, we show that a protein encoded by SARS-CoV designated as open reading frame-9b (ORF-9b) localizes to mitochondria and causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1, a host protein involved in mitochondrial fission. Also, acting on mitochondria, ORF-9b targets the mitochondrial-associated adaptor molecule MAVS signalosome by usurping PCBP2 and the HECT domain E3 ligase AIP4 to trigger the degradation of MAVS, TRAF3, and TRAF 6. This severely limits host cell IFN responses. Reducing either PCBP2 or AIP4 expression substantially reversed the ORF-9b-mediated reduction of MAVS and the suppression of antiviral transcriptional responses. Finally, transient ORF-9b expression led to a strong induction of autophagy in cells. The induction of autophagy depended upon ATG5, a critical autophagy regulator, but the inhibition of MAVS signaling did not. These results indicate that SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function to help evade host innate immunity. This study has uncovered an important clue to the pathogenesis of SARS-CoV infection and illustrates the havoc that a small ORF can cause in cells. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25135833</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1550-6606</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>193</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of immunology (Baltimore, Md. : 1950)</Title>
<ISOAbbreviation>J. Immunol.</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome.</ArticleTitle>
<Pagination>
<MedlinePgn>3080-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4049/jimmunol.1303196</ELocationID>
<Abstract>
<AbstractText>Coronaviruses (CoV) have recently emerged as potentially serious pathogens that can cause significant human morbidity and death. The severe acute respiratory syndrome (SARS)-CoV was identified as the etiologic agent of the 2002-2003 international SARS outbreak. Yet, how SARS evades innate immune responses to cause human disease remains poorly understood. In this study, we show that a protein encoded by SARS-CoV designated as open reading frame-9b (ORF-9b) localizes to mitochondria and causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1, a host protein involved in mitochondrial fission. Also, acting on mitochondria, ORF-9b targets the mitochondrial-associated adaptor molecule MAVS signalosome by usurping PCBP2 and the HECT domain E3 ligase AIP4 to trigger the degradation of MAVS, TRAF3, and TRAF 6. This severely limits host cell IFN responses. Reducing either PCBP2 or AIP4 expression substantially reversed the ORF-9b-mediated reduction of MAVS and the suppression of antiviral transcriptional responses. Finally, transient ORF-9b expression led to a strong induction of autophagy in cells. The induction of autophagy depended upon ATG5, a critical autophagy regulator, but the inhibition of MAVS signaling did not. These results indicate that SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function to help evade host innate immunity. This study has uncovered an important clue to the pathogenesis of SARS-CoV infection and illustrates the havoc that a small ORF can cause in cells. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Chong-Shan</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Hai-Yan</ForeName>
<Initials>HY</Initials>
<AffiliationInfo>
<Affiliation>Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boularan</LastName>
<ForeName>Cedric</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Ning-Na</ForeName>
<Initials>NN</Initials>
<AffiliationInfo>
<Affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abu-Asab</LastName>
<ForeName>Mones</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Immunopathology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shelhamer</LastName>
<ForeName>James H</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kehrl</LastName>
<ForeName>John H</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; jkehrl@niaid.nih.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ZIA AI000739-14</GrantID>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Immunol</MedlineTA>
<NlmUniqueID>2985117R</NlmUniqueID>
<ISSNLinking>0022-1767</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C502778">ATG5 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071187">Autophagy-Related Protein 5</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000593134">ORF-9b protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501903">PCBP2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048008">TNF Receptor-Associated Factor 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048029">TNF Receptor-Associated Factor 6</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C090656">TRAF3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C505371">VISA protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.26</RegistryNumber>
<NameOfSubstance UI="C432966">ITCH protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="D044767">Ubiquitin-Protein Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D020558">GTP Phosphohydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.5</RegistryNumber>
<NameOfSubstance UI="C110768">DNM1L protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071187" MajorTopicYN="N">Autophagy-Related Protein 5</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020558" MajorTopicYN="N">GTP Phosphohydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="N">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048008" MajorTopicYN="N">TNF Receptor-Associated Factor 3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048029" MajorTopicYN="N">TNF Receptor-Associated Factor 6</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044767" MajorTopicYN="N">Ubiquitin-Protein Ligases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054875" MajorTopicYN="N">Ubiquitination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25135833</ArticleId>
<ArticleId IdType="pii">jimmunol.1303196</ArticleId>
<ArticleId IdType="doi">10.4049/jimmunol.1303196</ArticleId>
<ArticleId IdType="pmc">PMC4179872</ArticleId>
<ArticleId IdType="mid">NIHMS616403</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2013 Apr 11;153(2):348-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23582325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Mar;9(3):e1003285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Neurosci. 2013;14:86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23937156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2013 Dec 13;425(24):5009-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24120683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Oct;100(1):286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24012996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 May;19(5):1903-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Biol Ther. 2004 Jun;4(6):827-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15174965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Jan 15;191(2):193-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2079-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2005 May;7(5-6):882-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15878679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Aug 1;202(3):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 9;122(5):669-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16125763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mod Pathol. 2005 Nov;18(11):1432-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15920543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2006 Jul;14(7):1157-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16843897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2007 Feb;141(2):137-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17190786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2007 Jul;127(1):116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14050-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17709747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2770-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19196953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Nov;5(11):e1000650</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19893624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 Dec;10(12):1300-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19881509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2010 Feb;11(2):133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2010;3(123):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20501938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Jul 15;185(2):1158-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 1;286(13):11649-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21292769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2011 May;13(5):589-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e19436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14590-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21844353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2012 Mar;13(3):255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Microbiol. 2012 Jan;35(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22378548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Aug 31;337(6098):1062-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Oct 4;490(7418):20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23038444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(23):13049-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23015697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Nov;4(11):2902-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Dec;4(12):3440-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e52909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23320079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1833(5):1256-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23434681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Mar;9(3):e1003231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2013 Aug;23(8):1025-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23877405</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000F44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25135833
   |texte=   SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25135833" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021