Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion.

Identifieur interne : 000B59 ( PubMed/Curation ); précédent : 000B58; suivant : 000B60

Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion.

Auteurs : Judith M. Phillips [États-Unis] ; Tom Gallagher [États-Unis] ; Susan R. Weiss [États-Unis]

Source :

RBID : pubmed:28148786

Descripteurs français

English descriptors

Abstract

The coronavirus (CoV) S protein requires cleavage by host cell proteases to mediate virus-cell and cell-cell fusion. Many strains of the murine coronavirus mouse hepatitis virus (MHV) have distinct, S-dependent organ and tissue tropisms despite using a common receptor, suggesting that they employ different cellular proteases for fusion. In support of this hypothesis, we found that inhibition of endosomal acidification only modestly decreased entry, and overexpression of the cell surface protease TMPRSS2 greatly enhanced entry, of the highly neurovirulent MHV strain JHM.SD relative to their effects on the reference strain, A59. However, TMPRSS2 overexpression decreased MHV structural protein expression, release of infectious particles, and syncytium formation, and endogenous serine protease activity did not contribute greatly to infection. We therefore investigated the importance of other classes of cellular proteases and found that inhibition of matrix metalloproteinase (MMP)- and a disintegrin and metalloprotease (ADAM)-family zinc metalloproteases markedly decreased both entry and cell-cell fusion. Suppression of virus by metalloprotease inhibition varied among tested cell lines and MHV S proteins, suggesting a role for metalloprotease use in strain-dependent tropism. We conclude that zinc metalloproteases must be considered potential contributors to coronavirus fusion.IMPORTANCE The family Coronaviridae includes viruses that cause two emerging diseases of humans, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as a number of important animal pathogens. Because coronaviruses depend on host protease-mediated cleavage of their S proteins for entry, a number of protease inhibitors have been proposed as antiviral agents. However, it is unclear which proteases mediate in vivo infection. For example, SARS-CoV infection of cultured cells depends on endosomal acid pH-dependent proteases rather than on the cell surface acid pH-independent serine protease TMPRSS2, but Zhou et al. (Antiviral Res 116:76-84, 2015, doi:10.1016/j.antiviral.2015.01.011) found that a serine protease inhibitor was more protective than a cathepsin inhibitor in SARS-CoV-infected mice. This paper explores the contributions of endosomal acidification and various proteases to coronavirus infection and identifies an unexpected class of proteases, the matrix metalloproteinase and ADAM families, as potential targets for anticoronavirus therapy.

DOI: 10.1128/JVI.01564-16
PubMed: 28148786

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28148786

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion.</title>
<author>
<name sortKey="Phillips, Judith M" sort="Phillips, Judith M" uniqKey="Phillips J" first="Judith M" last="Phillips">Judith M. Phillips</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA jphil@upenn.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Weiss, Susan R" sort="Weiss, Susan R" uniqKey="Weiss S" first="Susan R" last="Weiss">Susan R. Weiss</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28148786</idno>
<idno type="pmid">28148786</idno>
<idno type="doi">10.1128/JVI.01564-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000B59</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B59</idno>
<idno type="wicri:Area/PubMed/Curation">000B59</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000B59</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion.</title>
<author>
<name sortKey="Phillips, Judith M" sort="Phillips, Judith M" uniqKey="Phillips J" first="Judith M" last="Phillips">Judith M. Phillips</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA jphil@upenn.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Weiss, Susan R" sort="Weiss, Susan R" uniqKey="Weiss S" first="Susan R" last="Weiss">Susan R. Weiss</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Fusion</term>
<term>Host-Pathogen Interactions</term>
<term>Metalloproteases (metabolism)</term>
<term>Mice</term>
<term>Murine hepatitis virus (physiology)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Fusion cellulaire</term>
<term>Interactions hôte-pathogène</term>
<term>Metalloproteases (métabolisme)</term>
<term>Pénétration virale</term>
<term>Souris</term>
<term>Virus de l'hépatite murine (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Metalloproteases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Metalloproteases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de l'hépatite murine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Fusion</term>
<term>Host-Pathogen Interactions</term>
<term>Mice</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Fusion cellulaire</term>
<term>Interactions hôte-pathogène</term>
<term>Pénétration virale</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coronavirus (CoV) S protein requires cleavage by host cell proteases to mediate virus-cell and cell-cell fusion. Many strains of the murine coronavirus mouse hepatitis virus (MHV) have distinct, S-dependent organ and tissue tropisms despite using a common receptor, suggesting that they employ different cellular proteases for fusion. In support of this hypothesis, we found that inhibition of endosomal acidification only modestly decreased entry, and overexpression of the cell surface protease TMPRSS2 greatly enhanced entry, of the highly neurovirulent MHV strain JHM.SD relative to their effects on the reference strain, A59. However, TMPRSS2 overexpression decreased MHV structural protein expression, release of infectious particles, and syncytium formation, and endogenous serine protease activity did not contribute greatly to infection. We therefore investigated the importance of other classes of cellular proteases and found that inhibition of matrix metalloproteinase (MMP)- and a disintegrin and metalloprotease (ADAM)-family zinc metalloproteases markedly decreased both entry and cell-cell fusion. Suppression of virus by metalloprotease inhibition varied among tested cell lines and MHV S proteins, suggesting a role for metalloprotease use in strain-dependent tropism. We conclude that zinc metalloproteases must be considered potential contributors to coronavirus fusion.
<b>IMPORTANCE</b>
The family
<i>Coronaviridae</i>
includes viruses that cause two emerging diseases of humans, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as a number of important animal pathogens. Because coronaviruses depend on host protease-mediated cleavage of their S proteins for entry, a number of protease inhibitors have been proposed as antiviral agents. However, it is unclear which proteases mediate
<i>in vivo</i>
infection. For example, SARS-CoV infection of cultured cells depends on endosomal acid pH-dependent proteases rather than on the cell surface acid pH-independent serine protease TMPRSS2, but Zhou et al. (Antiviral Res 116:76-84, 2015, doi:10.1016/j.antiviral.2015.01.011) found that a serine protease inhibitor was more protective than a cathepsin inhibitor in SARS-CoV-infected mice. This paper explores the contributions of endosomal acidification and various proteases to coronavirus infection and identifies an unexpected class of proteases, the matrix metalloproteinase and ADAM families, as potential targets for anticoronavirus therapy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28148786</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>91</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01564-16</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01564-16</ELocationID>
<Abstract>
<AbstractText>The coronavirus (CoV) S protein requires cleavage by host cell proteases to mediate virus-cell and cell-cell fusion. Many strains of the murine coronavirus mouse hepatitis virus (MHV) have distinct, S-dependent organ and tissue tropisms despite using a common receptor, suggesting that they employ different cellular proteases for fusion. In support of this hypothesis, we found that inhibition of endosomal acidification only modestly decreased entry, and overexpression of the cell surface protease TMPRSS2 greatly enhanced entry, of the highly neurovirulent MHV strain JHM.SD relative to their effects on the reference strain, A59. However, TMPRSS2 overexpression decreased MHV structural protein expression, release of infectious particles, and syncytium formation, and endogenous serine protease activity did not contribute greatly to infection. We therefore investigated the importance of other classes of cellular proteases and found that inhibition of matrix metalloproteinase (MMP)- and a disintegrin and metalloprotease (ADAM)-family zinc metalloproteases markedly decreased both entry and cell-cell fusion. Suppression of virus by metalloprotease inhibition varied among tested cell lines and MHV S proteins, suggesting a role for metalloprotease use in strain-dependent tropism. We conclude that zinc metalloproteases must be considered potential contributors to coronavirus fusion.
<b>IMPORTANCE</b>
The family
<i>Coronaviridae</i>
includes viruses that cause two emerging diseases of humans, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as a number of important animal pathogens. Because coronaviruses depend on host protease-mediated cleavage of their S proteins for entry, a number of protease inhibitors have been proposed as antiviral agents. However, it is unclear which proteases mediate
<i>in vivo</i>
infection. For example, SARS-CoV infection of cultured cells depends on endosomal acid pH-dependent proteases rather than on the cell surface acid pH-independent serine protease TMPRSS2, but Zhou et al. (Antiviral Res 116:76-84, 2015, doi:10.1016/j.antiviral.2015.01.011) found that a serine protease inhibitor was more protective than a cathepsin inhibitor in SARS-CoV-infected mice. This paper explores the contributions of endosomal acidification and various proteases to coronavirus infection and identifies an unexpected class of proteases, the matrix metalloproteinase and ADAM families, as potential targets for anticoronavirus therapy.</AbstractText>
<CopyrightInformation>Copyright © 2017 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Phillips</LastName>
<ForeName>Judith M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA jphil@upenn.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gallagher</LastName>
<ForeName>Tom</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weiss</LastName>
<ForeName>Susan R</ForeName>
<Initials>SR</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-8155-4528</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K08 AI098503</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D045726">Metalloproteases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002459" MajorTopicYN="Y">Cell Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045726" MajorTopicYN="N">Metalloproteases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">TMPRSS2</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">membrane fusion</Keyword>
<Keyword MajorTopicYN="Y">metalloprotease</Keyword>
<Keyword MajorTopicYN="Y">virus entry</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28148786</ArticleId>
<ArticleId IdType="pii">JVI.01564-16</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01564-16</ArticleId>
<ArticleId IdType="pmc">PMC5375694</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Aug;85(15):7872-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7752-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurovirol. 2002 Oct;8(5):400-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12402166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(9):4122-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jun;86(12):6537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2010 Mar;85(3):551-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2010 Sep;20(5):298-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20629046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Aug;64(8):3817-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2164599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:3-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Jul;66(7):4028-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1318394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurovirol. 2002 Oct;8(5):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12402164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Aug;67(8):4504-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8392595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11030-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Sep 15;301(1):109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jan;84(2):1198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Nov;191(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1413526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 23;285(30):22758-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5768-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 03;8(10):e76469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jan;82(2):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12262-12267</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Apr;4(4):613-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1982 Jun;119(2):358-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6281979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2008 Dec 10;132(3-4):235-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18606506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:133-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(9):4943-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24554652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Apr;65(4):1916-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1848311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Sep;83(17):8744-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Oct;80(19):9896-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1990;276:37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1966425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Nov;77(21):11312-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14557617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 May 10;413(2):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21435673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3598-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Oct;74(19):9206-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Apr;71(4):3129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2015 Apr;116:76-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25666761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(2):1293-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov 06;10(11):e1004502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jan 6;227(1):215-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9007076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Dec 16;91(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27733646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1991 Jul 15;178(1):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2069575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Apr;83(7):3200-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2001 Feb 15;61(4):1686-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11245484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24157837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):6048-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Apr;200(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8128613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Apr;4(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(10):5502-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Feb;74(3):1393-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10627550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24253303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7809-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18490652</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000B59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28148786
   |texte=   Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28148786" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021