Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Going to Bat(s) for Studies of Disease Tolerance.

Identifieur interne : 000967 ( PubMed/Curation ); précédent : 000966; suivant : 000968

Going to Bat(s) for Studies of Disease Tolerance.

Auteurs : Judith N. Mandl [Canada] ; Caitlin Schneider [Canada] ; David S. Schneider [États-Unis] ; Michelle L. Baker [Australie]

Source :

RBID : pubmed:30294323

Descripteurs français

English descriptors

Abstract

A majority of viruses that have caused recent epidemics with high lethality rates in people, are zoonoses originating from wildlife. Among them are filoviruses (e.g., Marburg, Ebola), coronaviruses (e.g., SARS, MERS), henipaviruses (e.g., Hendra, Nipah) which share the common features that they are all RNA viruses, and that a dysregulated immune response is an important contributor to the tissue damage and hence pathogenicity that results from infection in humans. Intriguingly, these viruses also all originate from bat reservoirs. Bats have been shown to have a greater mean viral richness than predicted by their phylogenetic distance from humans, their geographic range, or their presence in urban areas, suggesting other traits must explain why bats harbor a greater number of zoonotic viruses than other mammals. Bats are highly unusual among mammals in other ways as well. Not only are they the only mammals capable of powered flight, they have extraordinarily long life spans, with little detectable increases in mortality or senescence until high ages. Their physiology likely impacted their history of pathogen exposure and necessitated adaptations that may have also affected immune signaling pathways. Do our life history traits make us susceptible to generating damaging immune responses to RNA viruses or does the physiology of bats make them particularly tolerant or resistant? Understanding what immune mechanisms enable bats to coexist with RNA viruses may provide critical fundamental insights into how to achieve greater resilience in humans.

DOI: 10.3389/fimmu.2018.02112
PubMed: 30294323

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30294323

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Going to Bat(s) for Studies of Disease Tolerance.</title>
<author>
<name sortKey="Mandl, Judith N" sort="Mandl, Judith N" uniqKey="Mandl J" first="Judith N" last="Mandl">Judith N. Mandl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, McGill University, Montreal, QC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Caitlin" sort="Schneider, Caitlin" uniqKey="Schneider C" first="Caitlin" last="Schneider">Caitlin Schneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, McGill University, Montreal, QC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schneider, David S" sort="Schneider, David S" uniqKey="Schneider D" first="David S" last="Schneider">David S. Schneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Stanford University, Stanford, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baker, Michelle L" sort="Baker, Michelle L" uniqKey="Baker M" first="Michelle L" last="Baker">Michelle L. Baker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30294323</idno>
<idno type="pmid">30294323</idno>
<idno type="doi">10.3389/fimmu.2018.02112</idno>
<idno type="wicri:Area/PubMed/Corpus">000967</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000967</idno>
<idno type="wicri:Area/PubMed/Curation">000967</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000967</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Going to Bat(s) for Studies of Disease Tolerance.</title>
<author>
<name sortKey="Mandl, Judith N" sort="Mandl, Judith N" uniqKey="Mandl J" first="Judith N" last="Mandl">Judith N. Mandl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physiology, McGill University, Montreal, QC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Caitlin" sort="Schneider, Caitlin" uniqKey="Schneider C" first="Caitlin" last="Schneider">Caitlin Schneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Microbiology and Immunology, McGill University, Montreal, QC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schneider, David S" sort="Schneider, David S" uniqKey="Schneider D" first="David S" last="Schneider">David S. Schneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Stanford University, Stanford, CA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baker, Michelle L" sort="Baker, Michelle L" uniqKey="Baker M" first="Michelle L" last="Baker">Michelle L. Baker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in immunology</title>
<idno type="eISSN">1664-3224</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chiroptera (immunology)</term>
<term>Chiroptera (virology)</term>
<term>Disease Reservoirs (virology)</term>
<term>Disease Resistance (immunology)</term>
<term>Host-Pathogen Interactions (immunology)</term>
<term>Humans</term>
<term>RNA Virus Infections (immunology)</term>
<term>RNA Virus Infections (transmission)</term>
<term>RNA Virus Infections (virology)</term>
<term>RNA Viruses (immunology)</term>
<term>Zoonoses (immunology)</term>
<term>Zoonoses (transmission)</term>
<term>Zoonoses (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Chiroptera (immunologie)</term>
<term>Chiroptera (virologie)</term>
<term>Humains</term>
<term>Infections à virus à ARN (immunologie)</term>
<term>Infections à virus à ARN (transmission)</term>
<term>Infections à virus à ARN (virologie)</term>
<term>Interactions hôte-pathogène (immunologie)</term>
<term>Réservoirs d'agents pathogènes (virologie)</term>
<term>Résistance à la maladie (immunologie)</term>
<term>Virus à ARN (immunologie)</term>
<term>Zoonoses (immunologie)</term>
<term>Zoonoses (transmission)</term>
<term>Zoonoses (virologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Chiroptera</term>
<term>Infections à virus à ARN</term>
<term>Interactions hôte-pathogène</term>
<term>Résistance à la maladie</term>
<term>Virus à ARN</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Chiroptera</term>
<term>Disease Resistance</term>
<term>Host-Pathogen Interactions</term>
<term>RNA Virus Infections</term>
<term>RNA Viruses</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>RNA Virus Infections</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Chiroptera</term>
<term>Infections à virus à ARN</term>
<term>Réservoirs d'agents pathogènes</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Chiroptera</term>
<term>Disease Reservoirs</term>
<term>RNA Virus Infections</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Infections à virus à ARN</term>
<term>Zoonoses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A majority of viruses that have caused recent epidemics with high lethality rates in people, are zoonoses originating from wildlife. Among them are filoviruses (e.g., Marburg, Ebola), coronaviruses (e.g., SARS, MERS), henipaviruses (e.g., Hendra, Nipah) which share the common features that they are all RNA viruses, and that a dysregulated immune response is an important contributor to the tissue damage and hence pathogenicity that results from infection in humans. Intriguingly, these viruses also all originate from bat reservoirs. Bats have been shown to have a greater mean viral richness than predicted by their phylogenetic distance from humans, their geographic range, or their presence in urban areas, suggesting other traits must explain why bats harbor a greater number of zoonotic viruses than other mammals. Bats are highly unusual among mammals in other ways as well. Not only are they the only mammals capable of powered flight, they have extraordinarily long life spans, with little detectable increases in mortality or senescence until high ages. Their physiology likely impacted their history of pathogen exposure and necessitated adaptations that may have also affected immune signaling pathways. Do our life history traits make us susceptible to generating damaging immune responses to RNA viruses or does the physiology of bats make them particularly tolerant or resistant? Understanding what immune mechanisms enable bats to coexist with RNA viruses may provide critical fundamental insights into how to achieve greater resilience in humans.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30294323</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-3224</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in immunology</Title>
<ISOAbbreviation>Front Immunol</ISOAbbreviation>
</Journal>
<ArticleTitle>Going to Bat(s) for Studies of Disease Tolerance.</ArticleTitle>
<Pagination>
<MedlinePgn>2112</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fimmu.2018.02112</ELocationID>
<Abstract>
<AbstractText>A majority of viruses that have caused recent epidemics with high lethality rates in people, are zoonoses originating from wildlife. Among them are filoviruses (e.g., Marburg, Ebola), coronaviruses (e.g., SARS, MERS), henipaviruses (e.g., Hendra, Nipah) which share the common features that they are all RNA viruses, and that a dysregulated immune response is an important contributor to the tissue damage and hence pathogenicity that results from infection in humans. Intriguingly, these viruses also all originate from bat reservoirs. Bats have been shown to have a greater mean viral richness than predicted by their phylogenetic distance from humans, their geographic range, or their presence in urban areas, suggesting other traits must explain why bats harbor a greater number of zoonotic viruses than other mammals. Bats are highly unusual among mammals in other ways as well. Not only are they the only mammals capable of powered flight, they have extraordinarily long life spans, with little detectable increases in mortality or senescence until high ages. Their physiology likely impacted their history of pathogen exposure and necessitated adaptations that may have also affected immune signaling pathways. Do our life history traits make us susceptible to generating damaging immune responses to RNA viruses or does the physiology of bats make them particularly tolerant or resistant? Understanding what immune mechanisms enable bats to coexist with RNA viruses may provide critical fundamental insights into how to achieve greater resilience in humans.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mandl</LastName>
<ForeName>Judith N</ForeName>
<Initials>JN</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>McGill Research Center for Complex Traits, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Caitlin</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>McGill Research Center for Complex Traits, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>David S</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Michelle L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Immunol</MedlineTA>
<NlmUniqueID>101560960</NlmUniqueID>
<ISSNLinking>1664-3224</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002685" MajorTopicYN="N">Chiroptera</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004197" MajorTopicYN="N">Disease Reservoirs</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012327" MajorTopicYN="N">RNA Virus Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012328" MajorTopicYN="N">RNA Viruses</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015047" MajorTopicYN="N">Zoonoses</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">bats (Chiroptera)</Keyword>
<Keyword MajorTopicYN="Y">comparative genome analyses</Keyword>
<Keyword MajorTopicYN="Y">disease tolerance</Keyword>
<Keyword MajorTopicYN="Y">host pathogen interaction</Keyword>
<Keyword MajorTopicYN="Y">innate immunity</Keyword>
<Keyword MajorTopicYN="Y">viral immunology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30294323</ArticleId>
<ArticleId IdType="doi">10.3389/fimmu.2018.02112</ArticleId>
<ArticleId IdType="pmc">PMC6158362</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 2012 Feb;21(3):633-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21883583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 1;438(7068):575-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16319873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 11;107(19):8666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2013 Dec 15;216(Pt 24):4514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24031067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2013 Feb 01;280(1756):20122753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23378666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2009 Oct;145(1):54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jan 28;307(5709):580-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 06;9(8):e103875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 May 22;7(1):2232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28533548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jul 13;12(7):e0180716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28704402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2012;30:271-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22224770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 15;6:21256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26876644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2012 Apr 24;3:796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22531181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 04;8(9):e74105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2004 Jan;125(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14706233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2010 Dec;10(8):1208-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20691810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Wildl Dis. 2015 Jul;51(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25919464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Dec 11;4(12):e8266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20011515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 1996 Jul-Sep;2(3):239-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8903239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2018 Mar 5;12(3):e0006311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29505617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Wildl Dis. 2013 Apr;49(2):398-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23568916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2018 May 17;173(5):1098-1110.e18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29706541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Jul 16;400(3):323-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20546753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 24;6:21722</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26906452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Pathol. 2007 May;136(4):266-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Jul 21;11:444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20663124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Sep 27;12(9):e0185308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28953976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Oct 01;11(10):e1005168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26426272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2012;359:105-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22476529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 May 14;110(20):8194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23610427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Wildl Dis. 2015 Jan;51(1):113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2015 Mar;23(3):172-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25572882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 May 18;25(10):R399-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25989074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2011 Dec;1(6):649-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2010 Nov 11;8:135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21070683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Dec 09;6:38597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27934903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Pathol. 2000 Feb-Apr;122(2-3):201-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10684689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jun 29;546(7660):646-650</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28636590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38920</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2013 Mar 27;10:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23537098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2011 Sep;51(3):364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21742778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2003 Nov-Dec;38(11-12):1365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14698817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2012 May;165(2):119-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22349147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Aug;81(Pt 8):1927-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10900029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 May;5(5):e1000439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2017 Oct;18(10):1084-1093</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28846084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Vet Res. 2011 Oct 18;7:61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22008235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2017 Aug 3;5:e3570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28791196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2006 Jul;19(3):531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16847084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e45479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2013 Apr 15;11:47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23587401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2012 Dec 1;380(9857):1956-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23200504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2013;371:1-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23686230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(10):e1002877</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Aug 9;12(8):e0182866</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28793350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 6;329(5992):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20689015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jan 15;160(1-2):20-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25533784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23962925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e22488</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2015 Dec 22;12:221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26689940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Oct 2;455(7213):674-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18724357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2016 Nov - Dec;339(11-12):517-528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27746072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a001651</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aust Vet J. 2002 Oct;80(10):636-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12465817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Mar 1;186(5):3138-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 4;7(1):7370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28779071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2009 Sep 28;9:159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19785757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Jun 1;186(11):6406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2015 Mar;218(Pt 5):653-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25740899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):628-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2015 Jan;96(Pt 1):24-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25228492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 Apr 1;190(7):3346-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23427247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2008 Nov;8(11):889-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Oct 1;212 Suppl 2:S109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25838270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 08;10(4):e0121329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25853558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jan 25;339(6118):456-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23258410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2696-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26903655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Nov 09;5:16561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26548564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2016 Jan 7;98(1):5-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26748513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Mar 7;16(5):480-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16527742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Oct;88(19):11297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25031349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 2011 Nov;85(5):946-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22049055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Jul 1;35(7):1626-1637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29617834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Dec 22;6:39419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28005079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2012 Nov 15;3(7):583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23154286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoonoses Public Health. 2013 Feb;60(1):104-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23302292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1956 Jan-Feb;98(1):10-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13295618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1972 Mar 17;175(4027):1255-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4551426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2017 Nov 28;8:1661</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29234323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2005 Jul;166(1):119-23; discussion 124-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2014 Dec 6;11(101):20140950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25401184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Oct 28;11(10):e0164938</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27792729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 24;6:37796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27883085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jan 29;6:19829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26821755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Jul 01;6:e1000972</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20617167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol. 1991 Mar;46(2):B47-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1997563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1975 Feb 14;187(4176):515-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">163483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2005 Jun;133(3):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15966107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Mar 29;91(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28122983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Jul;5(7):e1000536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19649327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2002 Feb;4(2):145-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2015 Aug;72(15):2973-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25809161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 18;7(1):8763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28821722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aust Vet J. 1998 Dec;76(12):813-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9972433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2016 Jan 22;8(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26805873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Jun 25;7(7):3420-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26120867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 21;451(7181):990-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Dec 07;16:1033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26643810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2013 Dec;13(12):851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24157573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2018 Mar 14;23(3):297-301.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29478775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Feb 13;8:14446</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28194016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 01;10(12):e0144055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26625128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Physiol. 2014 Dec 09;14:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25487871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):983-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11516376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2017 Feb 8;284(1848):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28179513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Ophthalmol. 2004 Jan-Feb;7(1):11-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14738502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2002 Dec;8(12):1468-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12498665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Mar;21(3):149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conserv Physiol. 2017 Apr 05;5(1):cox020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28421138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2015 Sep;11(9):20150576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26333664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2018 Apr;16(4):241-255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29479072</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000967 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000967 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30294323
   |texte=   Going to Bat(s) for Studies of Disease Tolerance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30294323" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021