Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis.

Identifieur interne : 000966 ( PubMed/Curation ); précédent : 000965; suivant : 000967

Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis.

Auteurs : Lisa E. Gralinski [États-Unis] ; Timothy P. Sheahan [États-Unis] ; Thomas E. Morrison [États-Unis] ; Vineet D. Menachery [États-Unis] ; Kara Jensen [États-Unis] ; Sarah R. Leist [États-Unis] ; Alan Whitmore [États-Unis] ; Mark T. Heise [États-Unis] ; Ralph S. Baric [États-Unis]

Source :

RBID : pubmed:30301856

Descripteurs français

English descriptors

Abstract

Acute respiratory distress syndrome (ARDS) is immune-driven pathologies that are observed in severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. SARS-CoV emerged in 2002 to 2003 and led to a global outbreak of SARS. As with the outcome of human infection, intranasal infection of C57BL/6J mice with mouse-adapted SARS-CoV results in high-titer virus replication within the lung, induction of inflammatory cytokines and chemokines, and immune cell infiltration within the lung. Using this model, we investigated the role of the complement system during SARS-CoV infection. We observed activation of the complement cascade in the lung as early as day 1 following SARS-CoV infection. To test whether this activation contributed to protective or pathologic outcomes, we utilized mice deficient in C3 (C3-/-), the central component of the complement system. Relative to C57BL/6J control mice, SARS-CoV-infected C3-/- mice exhibited significantly less weight loss and less respiratory dysfunction despite equivalent viral loads in the lung. Significantly fewer neutrophils and inflammatory monocytes were present in the lungs of C3-/- mice than in C56BL/6J controls, and subsequent studies revealed reduced lung pathology and lower cytokine and chemokine levels in both the lungs and the sera of C3-/- mice than in controls. These studies identify the complement system as an important host mediator of SARS-CoV-induced disease and suggest that complement activation regulates a systemic proinflammatory response to SARS-CoV infection. Furthermore, these data suggest that SARS-CoV-mediated disease is largely immune driven and that inhibiting complement signaling after SARS-CoV infection might function as an effective immune therapeutic.IMPORTANCE The complement system is a critical part of host defense to many bacterial, viral, and fungal infections. It works alongside pattern recognition receptors to stimulate host defense systems in advance of activation of the adaptive immune response. In this study, we directly test the role of complement in SARS-CoV pathogenesis using a mouse model and show that respiratory disease is significantly reduced in the absence of complement even though viral load is unchanged. Complement-deficient mice have reduced neutrophilia in their lungs and reduced systemic inflammation, consistent with the observation that SARS-CoV pathogenesis is an immune-driven disease. These data suggest that inhibition of complement signaling might be an effective treatment option following coronavirus infection.

DOI: 10.1128/mBio.01753-18
PubMed: 30301856

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30301856

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis.</title>
<author>
<name sortKey="Gralinski, Lisa E" sort="Gralinski, Lisa E" uniqKey="Gralinski L" first="Lisa E" last="Gralinski">Lisa E. Gralinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sheahan, Timothy P" sort="Sheahan, Timothy P" uniqKey="Sheahan T" first="Timothy P" last="Sheahan">Timothy P. Sheahan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Morrison, Thomas E" sort="Morrison, Thomas E" uniqKey="Morrison T" first="Thomas E" last="Morrison">Thomas E. Morrison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Menachery, Vineet D" sort="Menachery, Vineet D" uniqKey="Menachery V" first="Vineet D" last="Menachery">Vineet D. Menachery</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Kara" sort="Jensen, Kara" uniqKey="Jensen K" first="Kara" last="Jensen">Kara Jensen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Leist, Sarah R" sort="Leist, Sarah R" uniqKey="Leist S" first="Sarah R" last="Leist">Sarah R. Leist</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Whitmore, Alan" sort="Whitmore, Alan" uniqKey="Whitmore A" first="Alan" last="Whitmore">Alan Whitmore</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Heise, Mark T" sort="Heise, Mark T" uniqKey="Heise M" first="Mark T" last="Heise">Mark T. Heise</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA rbaric@email.unc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30301856</idno>
<idno type="pmid">30301856</idno>
<idno type="doi">10.1128/mBio.01753-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000966</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000966</idno>
<idno type="wicri:Area/PubMed/Curation">000966</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000966</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis.</title>
<author>
<name sortKey="Gralinski, Lisa E" sort="Gralinski, Lisa E" uniqKey="Gralinski L" first="Lisa E" last="Gralinski">Lisa E. Gralinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sheahan, Timothy P" sort="Sheahan, Timothy P" uniqKey="Sheahan T" first="Timothy P" last="Sheahan">Timothy P. Sheahan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Morrison, Thomas E" sort="Morrison, Thomas E" uniqKey="Morrison T" first="Thomas E" last="Morrison">Thomas E. Morrison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Menachery, Vineet D" sort="Menachery, Vineet D" uniqKey="Menachery V" first="Vineet D" last="Menachery">Vineet D. Menachery</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Kara" sort="Jensen, Kara" uniqKey="Jensen K" first="Kara" last="Jensen">Kara Jensen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Leist, Sarah R" sort="Leist, Sarah R" uniqKey="Leist S" first="Sarah R" last="Leist">Sarah R. Leist</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Whitmore, Alan" sort="Whitmore, Alan" uniqKey="Whitmore A" first="Alan" last="Whitmore">Alan Whitmore</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Heise, Mark T" sort="Heise, Mark T" uniqKey="Heise M" first="Mark T" last="Heise">Mark T. Heise</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA rbaric@email.unc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chemokines (blood)</term>
<term>Complement Activation</term>
<term>Complement C3 (deficiency)</term>
<term>Complement C3 (genetics)</term>
<term>Cytokines (blood)</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Host-Pathogen Interactions (immunology)</term>
<term>Immunity, Innate</term>
<term>Lung (immunology)</term>
<term>Lung (pathology)</term>
<term>Lung (virology)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>SARS Virus (immunology)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Viral Load</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation du complément</term>
<term>Animaux</term>
<term>Charge virale</term>
<term>Chimiokines (sang)</term>
<term>Complément C3 (déficit)</term>
<term>Complément C3 (génétique)</term>
<term>Cytokines (sang)</term>
<term>Femelle</term>
<term>Immunité innée</term>
<term>Interactions hôte-pathogène (immunologie)</term>
<term>Modèles animaux de maladie humaine</term>
<term>Poumon (anatomopathologie)</term>
<term>Poumon (immunologie)</term>
<term>Poumon (virologie)</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Syndrome respiratoire aigu sévère (immunologie)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Virus du SRAS (immunologie)</term>
<term>Virus du SRAS (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Chemokines</term>
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Complement C3</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Complement C3</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Complément C3</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complément C3</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
<term>Poumon</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Host-Pathogen Interactions</term>
<term>Lung</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Chimiokines</term>
<term>Cytokines</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Poumon</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lung</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Complement Activation</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Immunity, Innate</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Viral Load</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation du complément</term>
<term>Animaux</term>
<term>Charge virale</term>
<term>Femelle</term>
<term>Immunité innée</term>
<term>Modèles animaux de maladie humaine</term>
<term>Réplication virale</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Acute respiratory distress syndrome (ARDS) is immune-driven pathologies that are observed in severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. SARS-CoV emerged in 2002 to 2003 and led to a global outbreak of SARS. As with the outcome of human infection, intranasal infection of C57BL/6J mice with mouse-adapted SARS-CoV results in high-titer virus replication within the lung, induction of inflammatory cytokines and chemokines, and immune cell infiltration within the lung. Using this model, we investigated the role of the complement system during SARS-CoV infection. We observed activation of the complement cascade in the lung as early as day 1 following SARS-CoV infection. To test whether this activation contributed to protective or pathologic outcomes, we utilized mice deficient in C3 (C3
<sup>-/-</sup>
), the central component of the complement system. Relative to C57BL/6J control mice, SARS-CoV-infected
<i>C3</i>
<sup>-/-</sup>
mice exhibited significantly less weight loss and less respiratory dysfunction despite equivalent viral loads in the lung. Significantly fewer neutrophils and inflammatory monocytes were present in the lungs of
<i>C3</i>
<sup>-/-</sup>
mice than in C56BL/6J controls, and subsequent studies revealed reduced lung pathology and lower cytokine and chemokine levels in both the lungs and the sera of
<i>C3</i>
<sup>-/-</sup>
mice than in controls. These studies identify the complement system as an important host mediator of SARS-CoV-induced disease and suggest that complement activation regulates a systemic proinflammatory response to SARS-CoV infection. Furthermore, these data suggest that SARS-CoV-mediated disease is largely immune driven and that inhibiting complement signaling after SARS-CoV infection might function as an effective immune therapeutic.
<b>IMPORTANCE</b>
The complement system is a critical part of host defense to many bacterial, viral, and fungal infections. It works alongside pattern recognition receptors to stimulate host defense systems in advance of activation of the adaptive immune response. In this study, we directly test the role of complement in SARS-CoV pathogenesis using a mouse model and show that respiratory disease is significantly reduced in the absence of complement even though viral load is unchanged. Complement-deficient mice have reduced neutrophilia in their lungs and reduced systemic inflammation, consistent with the observation that SARS-CoV pathogenesis is an immune-driven disease. These data suggest that inhibition of complement signaling might be an effective treatment option following coronavirus infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30301856</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01753-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.01753-18</ELocationID>
<Abstract>
<AbstractText>Acute respiratory distress syndrome (ARDS) is immune-driven pathologies that are observed in severe cases of severe acute respiratory syndrome coronavirus (SARS-CoV) infection. SARS-CoV emerged in 2002 to 2003 and led to a global outbreak of SARS. As with the outcome of human infection, intranasal infection of C57BL/6J mice with mouse-adapted SARS-CoV results in high-titer virus replication within the lung, induction of inflammatory cytokines and chemokines, and immune cell infiltration within the lung. Using this model, we investigated the role of the complement system during SARS-CoV infection. We observed activation of the complement cascade in the lung as early as day 1 following SARS-CoV infection. To test whether this activation contributed to protective or pathologic outcomes, we utilized mice deficient in C3 (C3
<sup>-/-</sup>
), the central component of the complement system. Relative to C57BL/6J control mice, SARS-CoV-infected
<i>C3</i>
<sup>-/-</sup>
mice exhibited significantly less weight loss and less respiratory dysfunction despite equivalent viral loads in the lung. Significantly fewer neutrophils and inflammatory monocytes were present in the lungs of
<i>C3</i>
<sup>-/-</sup>
mice than in C56BL/6J controls, and subsequent studies revealed reduced lung pathology and lower cytokine and chemokine levels in both the lungs and the sera of
<i>C3</i>
<sup>-/-</sup>
mice than in controls. These studies identify the complement system as an important host mediator of SARS-CoV-induced disease and suggest that complement activation regulates a systemic proinflammatory response to SARS-CoV infection. Furthermore, these data suggest that SARS-CoV-mediated disease is largely immune driven and that inhibiting complement signaling after SARS-CoV infection might function as an effective immune therapeutic.
<b>IMPORTANCE</b>
The complement system is a critical part of host defense to many bacterial, viral, and fungal infections. It works alongside pattern recognition receptors to stimulate host defense systems in advance of activation of the adaptive immune response. In this study, we directly test the role of complement in SARS-CoV pathogenesis using a mouse model and show that respiratory disease is significantly reduced in the absence of complement even though viral load is unchanged. Complement-deficient mice have reduced neutrophilia in their lungs and reduced systemic inflammation, consistent with the observation that SARS-CoV pathogenesis is an immune-driven disease. These data suggest that inhibition of complement signaling might be an effective treatment option following coronavirus infection.</AbstractText>
<CopyrightInformation>Copyright © 2018 Gralinski et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gralinski</LastName>
<ForeName>Lisa E</ForeName>
<Initials>LE</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sheahan</LastName>
<ForeName>Timothy P</ForeName>
<Initials>TP</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morrison</LastName>
<ForeName>Thomas E</ForeName>
<Initials>TE</Initials>
<AffiliationInfo>
<Affiliation>Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Menachery</LastName>
<ForeName>Vineet D</ForeName>
<Initials>VD</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jensen</LastName>
<ForeName>Kara</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leist</LastName>
<ForeName>Sarah R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whitmore</LastName>
<ForeName>Alan</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Heise</LastName>
<ForeName>Mark T</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA rbaric@email.unc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U19 AI109761</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R00 AG049092</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA016086</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K99 AG049092</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI106772</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI100625</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018925">Chemokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003176">Complement C3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018925" MajorTopicYN="N">Chemokines</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003167" MajorTopicYN="Y">Complement Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003176" MajorTopicYN="N">Complement C3</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019562" MajorTopicYN="N">Viral Load</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">SARS-CoV</Keyword>
<Keyword MajorTopicYN="Y">animal models</Keyword>
<Keyword MajorTopicYN="Y">complement</Keyword>
<Keyword MajorTopicYN="Y">coronavirus</Keyword>
<Keyword MajorTopicYN="Y">respiratory viruses</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30301856</ArticleId>
<ArticleId IdType="pii">mBio.01753-18</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.01753-18</ArticleId>
<ArticleId IdType="pmc">PMC6178621</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Jun 26;10(6):e0131451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26115403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Mar;82(5):2274-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Dec 11;282(5396):2085-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pulm Med. 2014 May;20(3):233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24626235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Oct;76(10):5299-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">291947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2006 May 15;203(5):1371-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16651386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2009 May 01;9:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19405982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Jun 20;376(1):112-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunobiology. 2007;212(3):201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17412287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2005;23:821-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15771587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Mar 09;6(3):e17377</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21408070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 May 15;191(10):1697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15838797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 May 15;38(10):1420-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15156481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2010 Oct;23(4):740-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20930072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 Jun 7;7(6):1653-1663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28592648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Oct 09;11(10):e1005504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26452100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1999 Apr 1;162(7):3749-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10201887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tissue Antigens. 2005 Oct;66(4):291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16185324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Mar;95(Pt 3):578-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24323639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Autoimmun. 2010 May;34(3):J276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20005073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inflamm Allergy Drug Targets. 2009 Jul;8(3):236-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19601884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 May;81(10):5132-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17314163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1980 Aug;66(2):375-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7400321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(3):e1002586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22457620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2015 Jun 02;6:262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26082779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Aug 06;4(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23919993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Oct 15;192(8):1355-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16170752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autoimmunity. 2006 Aug;39(5):387-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2003 Aug;34(8):743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14506633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Oct;20(4):660-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17934078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Microbiol Immunol (Bp). 2012 Jun;2(2):103-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24672678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1980 May 3;1(8175):947-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6103300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin J Am Soc Nephrol. 2015 Sep 4;10(9):1636-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25568220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Aug 19;8(2):186-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Sep;84(18):9318-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20610717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Sep;84(17):8753-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Feb 10;19(2):181-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26867177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Pathol. 2014 Jul;151(1):83-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24581932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2003 Sep;9(9):1064-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14519241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2010 Sep;11(9):785-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20720586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2015 May;4(5):e28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26060601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2015 Dec;21(12):1508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26552008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunobiology. 2002 Sep;205(4-5):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12396016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 Mar 15;411(2):362-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21292294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Jun 8;149(6):1298-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22682250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2018 Apr 24;7(1):77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29691378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1998 Nov 15;161(10):5712-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9820553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2017 Jun 28;9(396):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2005 Dec;26 Suppl 1:94-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16198446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 May 26;6(3):e00638-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26015500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2013 Aug;49(2):221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23526211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2012;946:147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21948367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2011 Dec 13;2(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22167226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2013 Oct;49(4):503-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23672262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunol. 2011 May;23(5):317-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21422151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Nov;38(6):1146-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25065463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Oct 15;187(8):4245-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21918196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Mar;86(6):3347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(12):6551-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Immunol. 2010 Dec 23;11:64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21182784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2015 Jun;15(6):335-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25976513</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000966 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000966 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30301856
   |texte=   Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30301856" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021