Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells.

Identifieur interne : 002A81 ( PubMed/Corpus ); précédent : 002A80; suivant : 002A82

Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells.

Auteurs : Zhao-Ling Qin ; Ping Zhao ; Xiao-Lian Zhang ; Jian-Guo Yu ; Ming-Mei Cao ; Lan-Juan Zhao ; Jie Luan ; Zhong-Tian Qi

Source :

RBID : pubmed:15504339

English descriptors

Abstract

Two candidate small interfering RNAs (siRNAs) corresponding to severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike gene were designed and in vitro transcribed to explore the possibility of silencing SARS-CoV S gene. The plasmid pEGFP-optS, which contains the codon-optimized SARS-CoV S gene and expresses spike-EGFP fusion protein (S-EGFP) as silencing target and expressing reporter, was transfected with siRNAs into HEK 293T cells. At various time points of posttransfection, the levels of S-EGFP expression and amounts of spike mRNA transcript were detected by fluorescence microscopy, flow cytometry, Western blot, and real-time quantitative PCR, respectively. The results showed that the cells transfected with pEGFP-optS expressed S-EGFP fusion protein at a higher level compared with those transfected with pEGFP-S, which contains wildtype SARS-CoV spike gene sequence. The green fluorescence, mean fluorescence intensity, and SARS-CoV S RNA transcripts were found significantly reduced, and the expression of SARS-CoV S glycoprotein was strongly inhibited in those cells co-transfected with either EGFP- or S-specific siRNAs. Our findings demonstrated that the S-specific siRNAs used in this study were able to specifically and effectively inhibit SARS-CoV S glycoprotein expression in cultured cells through blocking the accumulation of S mRNA, which may provide an approach for studies on the functions of SARS-CoV S gene and development of novel prophylactic or therapeutic agents for SARS-CoV.

DOI: 10.1016/j.bbrc.2004.09.180
PubMed: 15504339

Links to Exploration step

pubmed:15504339

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells.</title>
<author>
<name sortKey="Qin, Zhao Ling" sort="Qin, Zhao Ling" uniqKey="Qin Z" first="Zhao-Ling" last="Qin">Zhao-Ling Qin</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Second Military Medical University, Shanghai 200433, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Ping" sort="Zhao, Ping" uniqKey="Zhao P" first="Ping" last="Zhao">Ping Zhao</name>
</author>
<author>
<name sortKey="Zhang, Xiao Lian" sort="Zhang, Xiao Lian" uniqKey="Zhang X" first="Xiao-Lian" last="Zhang">Xiao-Lian Zhang</name>
</author>
<author>
<name sortKey="Yu, Jian Guo" sort="Yu, Jian Guo" uniqKey="Yu J" first="Jian-Guo" last="Yu">Jian-Guo Yu</name>
</author>
<author>
<name sortKey="Cao, Ming Mei" sort="Cao, Ming Mei" uniqKey="Cao M" first="Ming-Mei" last="Cao">Ming-Mei Cao</name>
</author>
<author>
<name sortKey="Zhao, Lan Juan" sort="Zhao, Lan Juan" uniqKey="Zhao L" first="Lan-Juan" last="Zhao">Lan-Juan Zhao</name>
</author>
<author>
<name sortKey="Luan, Jie" sort="Luan, Jie" uniqKey="Luan J" first="Jie" last="Luan">Jie Luan</name>
</author>
<author>
<name sortKey="Qi, Zhong Tian" sort="Qi, Zhong Tian" uniqKey="Qi Z" first="Zhong-Tian" last="Qi">Zhong-Tian Qi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15504339</idno>
<idno type="pmid">15504339</idno>
<idno type="doi">10.1016/j.bbrc.2004.09.180</idno>
<idno type="wicri:Area/PubMed/Corpus">002A81</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells.</title>
<author>
<name sortKey="Qin, Zhao Ling" sort="Qin, Zhao Ling" uniqKey="Qin Z" first="Zhao-Ling" last="Qin">Zhao-Ling Qin</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Second Military Medical University, Shanghai 200433, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Ping" sort="Zhao, Ping" uniqKey="Zhao P" first="Ping" last="Zhao">Ping Zhao</name>
</author>
<author>
<name sortKey="Zhang, Xiao Lian" sort="Zhang, Xiao Lian" uniqKey="Zhang X" first="Xiao-Lian" last="Zhang">Xiao-Lian Zhang</name>
</author>
<author>
<name sortKey="Yu, Jian Guo" sort="Yu, Jian Guo" uniqKey="Yu J" first="Jian-Guo" last="Yu">Jian-Guo Yu</name>
</author>
<author>
<name sortKey="Cao, Ming Mei" sort="Cao, Ming Mei" uniqKey="Cao M" first="Ming-Mei" last="Cao">Ming-Mei Cao</name>
</author>
<author>
<name sortKey="Zhao, Lan Juan" sort="Zhao, Lan Juan" uniqKey="Zhao L" first="Lan-Juan" last="Zhao">Lan-Juan Zhao</name>
</author>
<author>
<name sortKey="Luan, Jie" sort="Luan, Jie" uniqKey="Luan J" first="Jie" last="Luan">Jie Luan</name>
</author>
<author>
<name sortKey="Qi, Zhong Tian" sort="Qi, Zhong Tian" uniqKey="Qi Z" first="Zhong-Tian" last="Qi">Zhong-Tian Qi</name>
</author>
</analytic>
<series>
<title level="j">Biochemical and biophysical research communications</title>
<idno type="ISSN">0006-291X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Line</term>
<term>Humans</term>
<term>Membrane Glycoproteins (biosynthesis)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>RNA Interference</term>
<term>RNA, Small Interfering (biosynthesis)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>RNA, Small Interfering (pharmacology)</term>
<term>SARS Virus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (biosynthesis)</term>
<term>Viral Envelope Proteins (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>RNA, Small Interfering</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>RNA, Small Interfering</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Humans</term>
<term>RNA Interference</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two candidate small interfering RNAs (siRNAs) corresponding to severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike gene were designed and in vitro transcribed to explore the possibility of silencing SARS-CoV S gene. The plasmid pEGFP-optS, which contains the codon-optimized SARS-CoV S gene and expresses spike-EGFP fusion protein (S-EGFP) as silencing target and expressing reporter, was transfected with siRNAs into HEK 293T cells. At various time points of posttransfection, the levels of S-EGFP expression and amounts of spike mRNA transcript were detected by fluorescence microscopy, flow cytometry, Western blot, and real-time quantitative PCR, respectively. The results showed that the cells transfected with pEGFP-optS expressed S-EGFP fusion protein at a higher level compared with those transfected with pEGFP-S, which contains wildtype SARS-CoV spike gene sequence. The green fluorescence, mean fluorescence intensity, and SARS-CoV S RNA transcripts were found significantly reduced, and the expression of SARS-CoV S glycoprotein was strongly inhibited in those cells co-transfected with either EGFP- or S-specific siRNAs. Our findings demonstrated that the S-specific siRNAs used in this study were able to specifically and effectively inhibit SARS-CoV S glycoprotein expression in cultured cells through blocking the accumulation of S mRNA, which may provide an approach for studies on the functions of SARS-CoV S gene and development of novel prophylactic or therapeutic agents for SARS-CoV.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15504339</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>02</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-291X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>324</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2004</Year>
<Month>Nov</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Biochemical and biophysical research communications</Title>
<ISOAbbreviation>Biochem. Biophys. Res. Commun.</ISOAbbreviation>
</Journal>
<ArticleTitle>Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells.</ArticleTitle>
<Pagination>
<MedlinePgn>1186-93</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Two candidate small interfering RNAs (siRNAs) corresponding to severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike gene were designed and in vitro transcribed to explore the possibility of silencing SARS-CoV S gene. The plasmid pEGFP-optS, which contains the codon-optimized SARS-CoV S gene and expresses spike-EGFP fusion protein (S-EGFP) as silencing target and expressing reporter, was transfected with siRNAs into HEK 293T cells. At various time points of posttransfection, the levels of S-EGFP expression and amounts of spike mRNA transcript were detected by fluorescence microscopy, flow cytometry, Western blot, and real-time quantitative PCR, respectively. The results showed that the cells transfected with pEGFP-optS expressed S-EGFP fusion protein at a higher level compared with those transfected with pEGFP-S, which contains wildtype SARS-CoV spike gene sequence. The green fluorescence, mean fluorescence intensity, and SARS-CoV S RNA transcripts were found significantly reduced, and the expression of SARS-CoV S glycoprotein was strongly inhibited in those cells co-transfected with either EGFP- or S-specific siRNAs. Our findings demonstrated that the S-specific siRNAs used in this study were able to specifically and effectively inhibit SARS-CoV S glycoprotein expression in cultured cells through blocking the accumulation of S mRNA, which may provide an approach for studies on the functions of SARS-CoV S gene and development of novel prophylactic or therapeutic agents for SARS-CoV.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Qin</LastName>
<ForeName>Zhao-ling</ForeName>
<Initials>ZL</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Second Military Medical University, Shanghai 200433, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xiao-lian</ForeName>
<Initials>XL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Jian-guo</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Ming-mei</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Lan-juan</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luan</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Zhong-tian</ForeName>
<Initials>ZT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochem Biophys Res Commun</MedlineTA>
<NlmUniqueID>0372516</NlmUniqueID>
<ISSNLinking>0006-291X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="Y">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>09</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15504339</ArticleId>
<ArticleId IdType="pii">S0006-291X(04)02212-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbrc.2004.09.180</ArticleId>
<ArticleId IdType="pmc">PMC7092946</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2014-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566571</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 1996 Oct;6(10):986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8908518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Jun;4(6):457-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12778125</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biotechnol. 1990 Dec;8(12):340-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1366894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Diagn. 2001 Feb;3(1):26-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11227069</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2004 Feb 27;560(1-3):141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988013</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 1998;67:227-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9759489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Jan;77(2):830-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502799</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9990044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2000 Jun;43(2-3):295-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10999412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2783-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594341</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2002 May 17;296(5571):1265-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12016303</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1997 Aug 1;16(15):4738-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9303318</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2002 May 15;30(10):e46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000851</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res Suppl. 2002;(2):113-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12903131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2001 May 24;411(6836):494-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11373684</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2002 Feb 1;295(5556):868-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11786607</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 1992 Nov;6(22):3343-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1484489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 2003 Jan;19(1):9-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12493242</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2003 Mar;33(3):401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12590264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2001 Oct 12;287(5):1099-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11587535</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Jun;73(6):4972-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10233959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2000 Jun 23;101(7):697-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10892741</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 2004 Aug;119(2):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15158602</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5515-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960009</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Transgenic Res. 1992 Sep;1(5):228-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1301214</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2002 May 17;296(5571):1263-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12016302</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1998 Feb 19;391(6669):806-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9486653</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>RNA. 2001 Nov;7(11):1509-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11720281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096193</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002A81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15504339
   |texte=   Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15504339" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021