Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Folding of the SARS coronavirus spike glycoprotein immunological fragment (SARS_S1b): thermodynamic and kinetic investigation correlating with three-dimensional structural modeling.

Identifieur interne : 002912 ( PubMed/Corpus ); précédent : 002911; suivant : 002913

Folding of the SARS coronavirus spike glycoprotein immunological fragment (SARS_S1b): thermodynamic and kinetic investigation correlating with three-dimensional structural modeling.

Auteurs : Changying Yu ; Chunshan Gui ; Haibin Luo ; Lili Chen ; Liang Zhang ; Hao Yu ; Sheng Yang ; Weihong Jiang ; Jianhua Shen ; Xu Shen ; Hualiang Jiang

Source :

RBID : pubmed:15683230

English descriptors

Abstract

Spike glycoprotein of SARS coronavirus (S protein) plays a pivotal role in SARS coronavirus (SARS_CoV) infection. The immunological fragment of the S protein (Ala251-His641, SARS_S1b) is believed to be essential for SARS_CoV entering the host cell through S protein-ACE-2 interaction. We have quantitatively characterized the thermally induced and GuHCl-induced unfolding features of SARS_S1b using circular dichroism (CD), tryptophan fluorescence, and stopped-flow spectral techniques. For the thermally induced unfolding at pH 7.4, the apparent activation energy (E(app)) and transition midpoint temperature (Tm) were determined to be 16.3 +/- 0.2 kcal/mol and 52.5 +/- 0.4 degrees C, respectively. The CD spectra are not dependent on temperature, suggesting that the secondary structure of SARS_S1b has a relatively high thermal stability. GuHCl strongly affected SARS_S1b structure. Both the CD and fluorescent spectra resulted in consistent values of the transition middle concentration of the denaturant (Cm, ranging from 2.30 to 2.45 M) and the standard free energy change (deltaG(o), ranging from 2.1 to 2.5 kcal/mol) for the SARS_S1b unfolding reaction. Moreover, the kinetic features of the chemical unfolding and refolding of SARS_S1b were also characterized using a stopped-flow CD spectral technique. The obvious unfolding reaction rates and relaxation times were determined at various GuHCl concentrations, and the Cm value was obtained, which is very close to the data that resulted from CD and fluorescent spectral determinations. Secondary and three-dimensional structural predictions by homology modeling indicated that SARS_S1b folded as a globular-like structure by beta-sheets and loops; two of the four tryptophans are located on the protein surface, which is in agreement with the tryptophan fluorescence result. The three-dimensional model was also used to explain the recently published experimental results of S1-ACE-2 binding and immunizations.

DOI: 10.1021/bi0482396
PubMed: 15683230

Links to Exploration step

pubmed:15683230

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Folding of the SARS coronavirus spike glycoprotein immunological fragment (SARS_S1b): thermodynamic and kinetic investigation correlating with three-dimensional structural modeling.</title>
<author>
<name sortKey="Yu, Changying" sort="Yu, Changying" uniqKey="Yu C" first="Changying" last="Yu">Changying Yu</name>
<affiliation>
<nlm:affiliation>Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 201203, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gui, Chunshan" sort="Gui, Chunshan" uniqKey="Gui C" first="Chunshan" last="Gui">Chunshan Gui</name>
</author>
<author>
<name sortKey="Luo, Haibin" sort="Luo, Haibin" uniqKey="Luo H" first="Haibin" last="Luo">Haibin Luo</name>
</author>
<author>
<name sortKey="Chen, Lili" sort="Chen, Lili" uniqKey="Chen L" first="Lili" last="Chen">Lili Chen</name>
</author>
<author>
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
</author>
<author>
<name sortKey="Yu, Hao" sort="Yu, Hao" uniqKey="Yu H" first="Hao" last="Yu">Hao Yu</name>
</author>
<author>
<name sortKey="Yang, Sheng" sort="Yang, Sheng" uniqKey="Yang S" first="Sheng" last="Yang">Sheng Yang</name>
</author>
<author>
<name sortKey="Jiang, Weihong" sort="Jiang, Weihong" uniqKey="Jiang W" first="Weihong" last="Jiang">Weihong Jiang</name>
</author>
<author>
<name sortKey="Shen, Jianhua" sort="Shen, Jianhua" uniqKey="Shen J" first="Jianhua" last="Shen">Jianhua Shen</name>
</author>
<author>
<name sortKey="Shen, Xu" sort="Shen, Xu" uniqKey="Shen X" first="Xu" last="Shen">Xu Shen</name>
</author>
<author>
<name sortKey="Jiang, Hualiang" sort="Jiang, Hualiang" uniqKey="Jiang H" first="Hualiang" last="Jiang">Hualiang Jiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15683230</idno>
<idno type="pmid">15683230</idno>
<idno type="doi">10.1021/bi0482396</idno>
<idno type="wicri:Area/PubMed/Corpus">002912</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002912</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Folding of the SARS coronavirus spike glycoprotein immunological fragment (SARS_S1b): thermodynamic and kinetic investigation correlating with three-dimensional structural modeling.</title>
<author>
<name sortKey="Yu, Changying" sort="Yu, Changying" uniqKey="Yu C" first="Changying" last="Yu">Changying Yu</name>
<affiliation>
<nlm:affiliation>Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 201203, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gui, Chunshan" sort="Gui, Chunshan" uniqKey="Gui C" first="Chunshan" last="Gui">Chunshan Gui</name>
</author>
<author>
<name sortKey="Luo, Haibin" sort="Luo, Haibin" uniqKey="Luo H" first="Haibin" last="Luo">Haibin Luo</name>
</author>
<author>
<name sortKey="Chen, Lili" sort="Chen, Lili" uniqKey="Chen L" first="Lili" last="Chen">Lili Chen</name>
</author>
<author>
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
</author>
<author>
<name sortKey="Yu, Hao" sort="Yu, Hao" uniqKey="Yu H" first="Hao" last="Yu">Hao Yu</name>
</author>
<author>
<name sortKey="Yang, Sheng" sort="Yang, Sheng" uniqKey="Yang S" first="Sheng" last="Yang">Sheng Yang</name>
</author>
<author>
<name sortKey="Jiang, Weihong" sort="Jiang, Weihong" uniqKey="Jiang W" first="Weihong" last="Jiang">Weihong Jiang</name>
</author>
<author>
<name sortKey="Shen, Jianhua" sort="Shen, Jianhua" uniqKey="Shen J" first="Jianhua" last="Shen">Jianhua Shen</name>
</author>
<author>
<name sortKey="Shen, Xu" sort="Shen, Xu" uniqKey="Shen X" first="Xu" last="Shen">Xu Shen</name>
</author>
<author>
<name sortKey="Jiang, Hualiang" sort="Jiang, Hualiang" uniqKey="Jiang H" first="Hualiang" last="Jiang">Hualiang Jiang</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Circular Dichroism</term>
<term>Computer Simulation</term>
<term>Guanidine (chemistry)</term>
<term>Hot Temperature</term>
<term>Kinetics</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (immunology)</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Peptide Fragments (chemistry)</term>
<term>Peptide Fragments (immunology)</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Protein Structure, Secondary</term>
<term>SARS Virus (chemistry)</term>
<term>Spectrometry, Fluorescence</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Structural Homology, Protein</term>
<term>Thermodynamics</term>
<term>Tryptophan (chemistry)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Guanidine</term>
<term>Membrane Glycoproteins</term>
<term>Peptide Fragments</term>
<term>Tryptophan</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Peptide Fragments</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Circular Dichroism</term>
<term>Computer Simulation</term>
<term>Hot Temperature</term>
<term>Kinetics</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Protein Structure, Secondary</term>
<term>Spectrometry, Fluorescence</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Structural Homology, Protein</term>
<term>Thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Spike glycoprotein of SARS coronavirus (S protein) plays a pivotal role in SARS coronavirus (SARS_CoV) infection. The immunological fragment of the S protein (Ala251-His641, SARS_S1b) is believed to be essential for SARS_CoV entering the host cell through S protein-ACE-2 interaction. We have quantitatively characterized the thermally induced and GuHCl-induced unfolding features of SARS_S1b using circular dichroism (CD), tryptophan fluorescence, and stopped-flow spectral techniques. For the thermally induced unfolding at pH 7.4, the apparent activation energy (E(app)) and transition midpoint temperature (Tm) were determined to be 16.3 +/- 0.2 kcal/mol and 52.5 +/- 0.4 degrees C, respectively. The CD spectra are not dependent on temperature, suggesting that the secondary structure of SARS_S1b has a relatively high thermal stability. GuHCl strongly affected SARS_S1b structure. Both the CD and fluorescent spectra resulted in consistent values of the transition middle concentration of the denaturant (Cm, ranging from 2.30 to 2.45 M) and the standard free energy change (deltaG(o), ranging from 2.1 to 2.5 kcal/mol) for the SARS_S1b unfolding reaction. Moreover, the kinetic features of the chemical unfolding and refolding of SARS_S1b were also characterized using a stopped-flow CD spectral technique. The obvious unfolding reaction rates and relaxation times were determined at various GuHCl concentrations, and the Cm value was obtained, which is very close to the data that resulted from CD and fluorescent spectral determinations. Secondary and three-dimensional structural predictions by homology modeling indicated that SARS_S1b folded as a globular-like structure by beta-sheets and loops; two of the four tryptophans are located on the protein surface, which is in agreement with the tryptophan fluorescence result. The three-dimensional model was also used to explain the recently published experimental results of S1-ACE-2 binding and immunizations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15683230</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>06</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>44</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2005</Year>
<Month>Feb</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Folding of the SARS coronavirus spike glycoprotein immunological fragment (SARS_S1b): thermodynamic and kinetic investigation correlating with three-dimensional structural modeling.</ArticleTitle>
<Pagination>
<MedlinePgn>1453-63</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Spike glycoprotein of SARS coronavirus (S protein) plays a pivotal role in SARS coronavirus (SARS_CoV) infection. The immunological fragment of the S protein (Ala251-His641, SARS_S1b) is believed to be essential for SARS_CoV entering the host cell through S protein-ACE-2 interaction. We have quantitatively characterized the thermally induced and GuHCl-induced unfolding features of SARS_S1b using circular dichroism (CD), tryptophan fluorescence, and stopped-flow spectral techniques. For the thermally induced unfolding at pH 7.4, the apparent activation energy (E(app)) and transition midpoint temperature (Tm) were determined to be 16.3 +/- 0.2 kcal/mol and 52.5 +/- 0.4 degrees C, respectively. The CD spectra are not dependent on temperature, suggesting that the secondary structure of SARS_S1b has a relatively high thermal stability. GuHCl strongly affected SARS_S1b structure. Both the CD and fluorescent spectra resulted in consistent values of the transition middle concentration of the denaturant (Cm, ranging from 2.30 to 2.45 M) and the standard free energy change (deltaG(o), ranging from 2.1 to 2.5 kcal/mol) for the SARS_S1b unfolding reaction. Moreover, the kinetic features of the chemical unfolding and refolding of SARS_S1b were also characterized using a stopped-flow CD spectral technique. The obvious unfolding reaction rates and relaxation times were determined at various GuHCl concentrations, and the Cm value was obtained, which is very close to the data that resulted from CD and fluorescent spectral determinations. Secondary and three-dimensional structural predictions by homology modeling indicated that SARS_S1b folded as a globular-like structure by beta-sheets and loops; two of the four tryptophans are located on the protein surface, which is in agreement with the tryptophan fluorescence result. The three-dimensional model was also used to explain the recently published experimental results of S1-ACE-2 binding and immunizations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Changying</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 201203, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gui</LastName>
<ForeName>Chunshan</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Haibin</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Lili</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Liang</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Hao</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Sheng</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Weihong</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Jianhua</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Xu</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Hualiang</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8DUH1N11BX</RegistryNumber>
<NameOfSubstance UI="D014364">Tryptophan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>JU58VJ6Y3B</RegistryNumber>
<NameOfSubstance UI="D019791">Guanidine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="Y">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019791" MajorTopicYN="N">Guanidine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010446" MajorTopicYN="N">Peptide Fragments</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="Y">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013050" MajorTopicYN="N">Spectrometry, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040681" MajorTopicYN="Y">Structural Homology, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="Y">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014364" MajorTopicYN="N">Tryptophan</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15683230</ArticleId>
<ArticleId IdType="doi">10.1021/bi0482396</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002912 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002912 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15683230
   |texte=   Folding of the SARS coronavirus spike glycoprotein immunological fragment (SARS_S1b): thermodynamic and kinetic investigation correlating with three-dimensional structural modeling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15683230" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021