Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus.

Identifieur interne : 002795 ( PubMed/Corpus ); précédent : 002794; suivant : 002796

Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus.

Auteurs : Snawar Hussain ; Ji'An Pan ; Yu Chen ; Yalin Yang ; Jing Xu ; Yu Peng ; Ying Wu ; Zhaoyang Li ; Ying Zhu ; Po Tien ; Deyin Guo

Source :

RBID : pubmed:15827143

English descriptors

Abstract

The expression of the genomic information of severe acute respiratory syndrome coronavirus (SARS CoV) involves synthesis of a nested set of subgenomic RNAs (sgRNAs) by discontinuous transcription. In SARS CoV-infected cells, 10 sgRNAs, including 2 novel ones, were identified, which were predicted to be functional in the expression of 12 open reading frames located in the 3' one-third of the genome. Surprisingly, one new sgRNA could lead to production of a truncated spike protein. Sequence analysis of the leader-body fusion sites of each sgRNA showed that the junction sequences and the corresponding transcription-regulatory sequence (TRS) are unique for each species of sgRNA and are consistent after virus passages. For the two novel sgRNAs, each used a variant of the TRS that has one nucleotide mismatch in the conserved hexanucleotide core (ACGAAC) in the TRS. Coexistence of both plus and minus strands of SARS CoV sgRNAs and evidence for derivation of the sgRNA core sequence from the body core sequence favor the model of discontinuous transcription during minus-strand synthesis. Moreover, one rare species of sgRNA has the junction sequence AAA, indicating that its transcription could result from a noncanonical transcription signal. Taken together, these results provide more insight into the molecular mechanisms of genome expression and subgenomic transcription of SARS CoV.

DOI: 10.1128/JVI.79.9.5288-5295.2005
PubMed: 15827143

Links to Exploration step

pubmed:15827143

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Hussain, Snawar" sort="Hussain, Snawar" uniqKey="Hussain S" first="Snawar" last="Hussain">Snawar Hussain</name>
<affiliation>
<nlm:affiliation>Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Ji An" sort="Pan, Ji An" uniqKey="Pan J" first="Ji'An" last="Pan">Ji'An Pan</name>
</author>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
</author>
<author>
<name sortKey="Yang, Yalin" sort="Yang, Yalin" uniqKey="Yang Y" first="Yalin" last="Yang">Yalin Yang</name>
</author>
<author>
<name sortKey="Xu, Jing" sort="Xu, Jing" uniqKey="Xu J" first="Jing" last="Xu">Jing Xu</name>
</author>
<author>
<name sortKey="Peng, Yu" sort="Peng, Yu" uniqKey="Peng Y" first="Yu" last="Peng">Yu Peng</name>
</author>
<author>
<name sortKey="Wu, Ying" sort="Wu, Ying" uniqKey="Wu Y" first="Ying" last="Wu">Ying Wu</name>
</author>
<author>
<name sortKey="Li, Zhaoyang" sort="Li, Zhaoyang" uniqKey="Li Z" first="Zhaoyang" last="Li">Zhaoyang Li</name>
</author>
<author>
<name sortKey="Zhu, Ying" sort="Zhu, Ying" uniqKey="Zhu Y" first="Ying" last="Zhu">Ying Zhu</name>
</author>
<author>
<name sortKey="Tien, Po" sort="Tien, Po" uniqKey="Tien P" first="Po" last="Tien">Po Tien</name>
</author>
<author>
<name sortKey="Guo, Deyin" sort="Guo, Deyin" uniqKey="Guo D" first="Deyin" last="Guo">Deyin Guo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15827143</idno>
<idno type="pmid">15827143</idno>
<idno type="doi">10.1128/JVI.79.9.5288-5295.2005</idno>
<idno type="wicri:Area/PubMed/Corpus">002795</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002795</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus.</title>
<author>
<name sortKey="Hussain, Snawar" sort="Hussain, Snawar" uniqKey="Hussain S" first="Snawar" last="Hussain">Snawar Hussain</name>
<affiliation>
<nlm:affiliation>Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Ji An" sort="Pan, Ji An" uniqKey="Pan J" first="Ji'An" last="Pan">Ji'An Pan</name>
</author>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
</author>
<author>
<name sortKey="Yang, Yalin" sort="Yang, Yalin" uniqKey="Yang Y" first="Yalin" last="Yang">Yalin Yang</name>
</author>
<author>
<name sortKey="Xu, Jing" sort="Xu, Jing" uniqKey="Xu J" first="Jing" last="Xu">Jing Xu</name>
</author>
<author>
<name sortKey="Peng, Yu" sort="Peng, Yu" uniqKey="Peng Y" first="Yu" last="Peng">Yu Peng</name>
</author>
<author>
<name sortKey="Wu, Ying" sort="Wu, Ying" uniqKey="Wu Y" first="Ying" last="Wu">Ying Wu</name>
</author>
<author>
<name sortKey="Li, Zhaoyang" sort="Li, Zhaoyang" uniqKey="Li Z" first="Zhaoyang" last="Li">Zhaoyang Li</name>
</author>
<author>
<name sortKey="Zhu, Ying" sort="Zhu, Ying" uniqKey="Zhu Y" first="Ying" last="Zhu">Ying Zhu</name>
</author>
<author>
<name sortKey="Tien, Po" sort="Tien, Po" uniqKey="Tien P" first="Po" last="Tien">Po Tien</name>
</author>
<author>
<name sortKey="Guo, Deyin" sort="Guo, Deyin" uniqKey="Guo D" first="Deyin" last="Guo">Deyin Guo</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Chlorocebus aethiops</term>
<term>Cricetinae</term>
<term>Genome, Viral</term>
<term>Molecular Sequence Data</term>
<term>Open Reading Frames</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Viral (biosynthesis)</term>
<term>RNA, Viral (genetics)</term>
<term>SARS Virus (genetics)</term>
<term>Templates, Genetic</term>
<term>Transcription Initiation Site</term>
<term>Transcription, Genetic</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Chlorocebus aethiops</term>
<term>Cricetinae</term>
<term>Genome, Viral</term>
<term>Molecular Sequence Data</term>
<term>Open Reading Frames</term>
<term>Templates, Genetic</term>
<term>Transcription Initiation Site</term>
<term>Transcription, Genetic</term>
<term>Vero Cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The expression of the genomic information of severe acute respiratory syndrome coronavirus (SARS CoV) involves synthesis of a nested set of subgenomic RNAs (sgRNAs) by discontinuous transcription. In SARS CoV-infected cells, 10 sgRNAs, including 2 novel ones, were identified, which were predicted to be functional in the expression of 12 open reading frames located in the 3' one-third of the genome. Surprisingly, one new sgRNA could lead to production of a truncated spike protein. Sequence analysis of the leader-body fusion sites of each sgRNA showed that the junction sequences and the corresponding transcription-regulatory sequence (TRS) are unique for each species of sgRNA and are consistent after virus passages. For the two novel sgRNAs, each used a variant of the TRS that has one nucleotide mismatch in the conserved hexanucleotide core (ACGAAC) in the TRS. Coexistence of both plus and minus strands of SARS CoV sgRNAs and evidence for derivation of the sgRNA core sequence from the body core sequence favor the model of discontinuous transcription during minus-strand synthesis. Moreover, one rare species of sgRNA has the junction sequence AAA, indicating that its transcription could result from a noncanonical transcription signal. Taken together, these results provide more insight into the molecular mechanisms of genome expression and subgenomic transcription of SARS CoV.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15827143</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>06</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>79</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2005</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus.</ArticleTitle>
<Pagination>
<MedlinePgn>5288-95</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The expression of the genomic information of severe acute respiratory syndrome coronavirus (SARS CoV) involves synthesis of a nested set of subgenomic RNAs (sgRNAs) by discontinuous transcription. In SARS CoV-infected cells, 10 sgRNAs, including 2 novel ones, were identified, which were predicted to be functional in the expression of 12 open reading frames located in the 3' one-third of the genome. Surprisingly, one new sgRNA could lead to production of a truncated spike protein. Sequence analysis of the leader-body fusion sites of each sgRNA showed that the junction sequences and the corresponding transcription-regulatory sequence (TRS) are unique for each species of sgRNA and are consistent after virus passages. For the two novel sgRNAs, each used a variant of the TRS that has one nucleotide mismatch in the conserved hexanucleotide core (ACGAAC) in the TRS. Coexistence of both plus and minus strands of SARS CoV sgRNAs and evidence for derivation of the sgRNA core sequence from the body core sequence favor the model of discontinuous transcription during minus-strand synthesis. Moreover, one rare species of sgRNA has the junction sequence AAA, indicating that its transcription could result from a noncanonical transcription signal. Taken together, these results provide more insight into the molecular mechanisms of genome expression and subgenomic transcription of SARS CoV.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hussain</LastName>
<ForeName>Snawar</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Ji'an</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yalin</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Zhaoyang</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tien</LastName>
<ForeName>Po</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Deyin</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="Y">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013698" MajorTopicYN="N">Templates, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024363" MajorTopicYN="Y">Transcription Initiation Site</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15827143</ArticleId>
<ArticleId IdType="pii">79/9/5288</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.79.9.5288-5295.2005</ArticleId>
<ArticleId IdType="pmc">PMC1082772</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):980-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Jun;83(12):4204-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3012558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1988 Jul;69 ( Pt 7):1725-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2839605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Jul;86(14):5626-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2546161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Mar;64(3):1050-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1990 Feb;174(2):410-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1689525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Dec;68(12):8169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7966608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1995;380:499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Nov;72(11):8517-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:215-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12056-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10518575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2005 Jan;30(1):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15744567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4039-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Dec 5;278(1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11112483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2001 Feb;82(Pt 2):385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002795 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002795 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15827143
   |texte=   Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15827143" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021