Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells.

Identifieur interne : 002560 ( PubMed/Corpus ); précédent : 002559; suivant : 002561

Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells.

Auteurs : Shou Guo Fang ; Shuo Shen ; Felicia P L. Tay ; D X Liu

Source :

RBID : pubmed:16137658

English descriptors

Abstract

An interesting question posed by the current evidence that severe acute respiratory syndrome coronavirus may be originated from an animal coronavirus is how such an animal coronavirus breaks the host species barrier and becomes zoonotic. In this report, we study the chronological order of genotypic changes in the spike protein of avian coronavirus infectious bronchitis virus (IBV) during its adaptation to a primate cell line. Adaptation of the Beaudette strain of IBV from chicken embryo to Vero cells showed the accumulation of 49 amino acid mutations. Among them, 26 (53.06%) substitutions were located in the S protein. Sequencing analysis and comparison of the S gene demonstrated that the majority of the mutations were accumulated and fixed at passage 7 on Vero cells and minor variants were isolated in several passages. Evidence present suggests that the dominant Vero cell-adapted IBV strain may be derived from the chicken embryo passages by selection of and potential recombination between the minor variants. This may explain why adaptation is a rapid process and the dominant strain, once adapted to a new host cell, becomes relatively stable.

DOI: 10.1016/j.bbrc.2005.08.105
PubMed: 16137658

Links to Exploration step

pubmed:16137658

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells.</title>
<author>
<name sortKey="Fang, Shou Guo" sort="Fang, Shou Guo" uniqKey="Fang S" first="Shou Guo" last="Fang">Shou Guo Fang</name>
<affiliation>
<nlm:affiliation>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shen, Shuo" sort="Shen, Shuo" uniqKey="Shen S" first="Shuo" last="Shen">Shuo Shen</name>
</author>
<author>
<name sortKey="Tay, Felicia P L" sort="Tay, Felicia P L" uniqKey="Tay F" first="Felicia P L" last="Tay">Felicia P L. Tay</name>
</author>
<author>
<name sortKey="Liu, D X" sort="Liu, D X" uniqKey="Liu D" first="D X" last="Liu">D X Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16137658</idno>
<idno type="pmid">16137658</idno>
<idno type="doi">10.1016/j.bbrc.2005.08.105</idno>
<idno type="wicri:Area/PubMed/Corpus">002560</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002560</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells.</title>
<author>
<name sortKey="Fang, Shou Guo" sort="Fang, Shou Guo" uniqKey="Fang S" first="Shou Guo" last="Fang">Shou Guo Fang</name>
<affiliation>
<nlm:affiliation>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shen, Shuo" sort="Shen, Shuo" uniqKey="Shen S" first="Shuo" last="Shen">Shuo Shen</name>
</author>
<author>
<name sortKey="Tay, Felicia P L" sort="Tay, Felicia P L" uniqKey="Tay F" first="Felicia P L" last="Tay">Felicia P L. Tay</name>
</author>
<author>
<name sortKey="Liu, D X" sort="Liu, D X" uniqKey="Liu D" first="D X" last="Liu">D X Liu</name>
</author>
</analytic>
<series>
<title level="j">Biochemical and biophysical research communications</title>
<idno type="ISSN">0006-291X</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Chickens (virology)</term>
<term>Chlorocebus aethiops (virology)</term>
<term>Gene Transfer, Horizontal (genetics)</term>
<term>Genetic Variation (genetics)</term>
<term>Infectious bronchitis virus (genetics)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Molecular Sequence Data</term>
<term>Primates (virology)</term>
<term>Recombination, Genetic (genetics)</term>
<term>Selection, Genetic</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Vero Cells</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Gene Transfer, Horizontal</term>
<term>Genetic Variation</term>
<term>Infectious bronchitis virus</term>
<term>Membrane Glycoproteins</term>
<term>Recombination, Genetic</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Chickens</term>
<term>Chlorocebus aethiops</term>
<term>Primates</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Molecular Sequence Data</term>
<term>Selection, Genetic</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Vero Cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An interesting question posed by the current evidence that severe acute respiratory syndrome coronavirus may be originated from an animal coronavirus is how such an animal coronavirus breaks the host species barrier and becomes zoonotic. In this report, we study the chronological order of genotypic changes in the spike protein of avian coronavirus infectious bronchitis virus (IBV) during its adaptation to a primate cell line. Adaptation of the Beaudette strain of IBV from chicken embryo to Vero cells showed the accumulation of 49 amino acid mutations. Among them, 26 (53.06%) substitutions were located in the S protein. Sequencing analysis and comparison of the S gene demonstrated that the majority of the mutations were accumulated and fixed at passage 7 on Vero cells and minor variants were isolated in several passages. Evidence present suggests that the dominant Vero cell-adapted IBV strain may be derived from the chicken embryo passages by selection of and potential recombination between the minor variants. This may explain why adaptation is a rapid process and the dominant strain, once adapted to a new host cell, becomes relatively stable.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16137658</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>11</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-291X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>336</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2005</Year>
<Month>Oct</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Biochemical and biophysical research communications</Title>
<ISOAbbreviation>Biochem. Biophys. Res. Commun.</ISOAbbreviation>
</Journal>
<ArticleTitle>Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells.</ArticleTitle>
<Pagination>
<MedlinePgn>417-23</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>An interesting question posed by the current evidence that severe acute respiratory syndrome coronavirus may be originated from an animal coronavirus is how such an animal coronavirus breaks the host species barrier and becomes zoonotic. In this report, we study the chronological order of genotypic changes in the spike protein of avian coronavirus infectious bronchitis virus (IBV) during its adaptation to a primate cell line. Adaptation of the Beaudette strain of IBV from chicken embryo to Vero cells showed the accumulation of 49 amino acid mutations. Among them, 26 (53.06%) substitutions were located in the S protein. Sequencing analysis and comparison of the S gene demonstrated that the majority of the mutations were accumulated and fixed at passage 7 on Vero cells and minor variants were isolated in several passages. Evidence present suggests that the dominant Vero cell-adapted IBV strain may be derived from the chicken embryo passages by selection of and potential recombination between the minor variants. This may explain why adaptation is a rapid process and the dominant strain, once adapted to a new host cell, becomes relatively stable.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Shou Guo</ForeName>
<Initials>SG</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Shuo</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tay</LastName>
<ForeName>Felicia P L</ForeName>
<Initials>FP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>D X</ForeName>
<Initials>DX</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochem Biophys Res Commun</MedlineTA>
<NlmUniqueID>0372516</NlmUniqueID>
<ISSNLinking>0006-291X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="N">Chickens</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022761" MajorTopicYN="N">Gene Transfer, Horizontal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001351" MajorTopicYN="N">Infectious bronchitis virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011323" MajorTopicYN="N">Primates</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="Y">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16137658</ArticleId>
<ArticleId IdType="pii">S0006-291X(05)01819-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbrc.2005.08.105</ArticleId>
<ArticleId IdType="pmc">PMC7092901</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):417-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Apr;2(4):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031727</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9024-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371559</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2004 Sep 1;326(2):288-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15302214</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Microbiol Immunol. 1982;99:165-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6178564</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Pathol. 2002 Feb;31(1):81-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12425795</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Microbiol. 2003 Aug;6(4):399-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12941412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2003 Jun 20;311(1):16-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12832199</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1996 Apr;70(4):2632-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8642698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1987 Jan;68 ( Pt 1):57-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3027249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1983 Oct 8;113(15):354-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6316620</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):420-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350662</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1996 Mar 2;138(9):208-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8686155</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Sep 10;274(37):26085-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10473557</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496474</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1648219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002560 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002560 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16137658
   |texte=   Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16137658" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021