Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter.

Identifieur interne : 002381 ( PubMed/Corpus ); précédent : 002380; suivant : 002382

Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter.

Auteurs : M H Verheije ; T. Würdinger ; V W Van Beusechem ; C A M. De Haan ; W R Gerritsen ; P J M. Rottier

Source :

RBID : pubmed:16415002

English descriptors

Abstract

Murine hepatitis coronavirus (MHV)-A59 infection depends on the interaction of its spike (S) protein with the cellular receptor mCEACAM1a present on murine cells. Human cells lack this receptor and are therefore not susceptible to MHV. Specific alleviation of the tropism barrier by redirecting MHV to a tumor-specific receptor could lead to a virus with appealing properties for tumor therapy. To demonstrate that MHV can be retargeted to a nonnative receptor on human cells, we produced bispecific adapter proteins composed of the N-terminal D1 domain of mCEACAM1a linked to a short targeting peptide, the six-amino-acid His tag. Preincubation of MHV with the adapter proteins and subsequent inoculation of human cells expressing an artificial His receptor resulted in infection of these otherwise nonsusceptible cells and led to subsequent production of progeny virus. To generate a self-targeted virus able to establish multiround infection of the target cells, we subsequently incorporated the gene encoding the bispecific adapter protein as an additional expression cassette into the MHV genome through targeted RNA recombination. When inoculated onto murine LR7 cells, the resulting recombinant virus indeed expressed the adapter protein. Furthermore, inoculation of human target cells with the virus resulted in a His receptor-specific infection that was multiround. Extensive cell-cell fusion and rapid cell killing of infected target cells was observed. Our results show that MHV can be genetically redirected via adapters composed of the S protein binding part of mCEACAM1a and a targeting peptide recognizing a nonnative receptor expressed on human cells, consequently leading to rapid cell death. The results provide interesting leads for further investigations of the use of coronaviruses as antitumor agents.

DOI: 10.1128/JVI.80.3.1250-1260.2006
PubMed: 16415002

Links to Exploration step

pubmed:16415002

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter.</title>
<author>
<name sortKey="Verheije, M H" sort="Verheije, M H" uniqKey="Verheije M" first="M H" last="Verheije">M H Verheije</name>
<affiliation>
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wurdinger, T" sort="Wurdinger, T" uniqKey="Wurdinger T" first="T" last="Würdinger">T. Würdinger</name>
</author>
<author>
<name sortKey="Van Beusechem, V W" sort="Van Beusechem, V W" uniqKey="Van Beusechem V" first="V W" last="Van Beusechem">V W Van Beusechem</name>
</author>
<author>
<name sortKey="De Haan, C A M" sort="De Haan, C A M" uniqKey="De Haan C" first="C A M" last="De Haan">C A M. De Haan</name>
</author>
<author>
<name sortKey="Gerritsen, W R" sort="Gerritsen, W R" uniqKey="Gerritsen W" first="W R" last="Gerritsen">W R Gerritsen</name>
</author>
<author>
<name sortKey="Rottier, P J M" sort="Rottier, P J M" uniqKey="Rottier P" first="P J M" last="Rottier">P J M. Rottier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16415002</idno>
<idno type="pmid">16415002</idno>
<idno type="doi">10.1128/JVI.80.3.1250-1260.2006</idno>
<idno type="wicri:Area/PubMed/Corpus">002381</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002381</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter.</title>
<author>
<name sortKey="Verheije, M H" sort="Verheije, M H" uniqKey="Verheije M" first="M H" last="Verheije">M H Verheije</name>
<affiliation>
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wurdinger, T" sort="Wurdinger, T" uniqKey="Wurdinger T" first="T" last="Würdinger">T. Würdinger</name>
</author>
<author>
<name sortKey="Van Beusechem, V W" sort="Van Beusechem, V W" uniqKey="Van Beusechem V" first="V W" last="Van Beusechem">V W Van Beusechem</name>
</author>
<author>
<name sortKey="De Haan, C A M" sort="De Haan, C A M" uniqKey="De Haan C" first="C A M" last="De Haan">C A M. De Haan</name>
</author>
<author>
<name sortKey="Gerritsen, W R" sort="Gerritsen, W R" uniqKey="Gerritsen W" first="W R" last="Gerritsen">W R Gerritsen</name>
</author>
<author>
<name sortKey="Rottier, P J M" sort="Rottier, P J M" uniqKey="Rottier P" first="P J M" last="Rottier">P J M. Rottier</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Carcinoembryonic Antigen (genetics)</term>
<term>Carcinoembryonic Antigen (physiology)</term>
<term>Cats</term>
<term>Cell Line</term>
<term>DNA, Recombinant (genetics)</term>
<term>Gene Products, vif (genetics)</term>
<term>Gene Products, vif (physiology)</term>
<term>Humans</term>
<term>Membrane Fusion</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (physiology)</term>
<term>Mice</term>
<term>Murine hepatitis virus (genetics)</term>
<term>Murine hepatitis virus (pathogenicity)</term>
<term>Murine hepatitis virus (physiology)</term>
<term>Receptors, Virus (genetics)</term>
<term>Receptors, Virus (physiology)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (physiology)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carcinoembryonic Antigen</term>
<term>DNA, Recombinant</term>
<term>Gene Products, vif</term>
<term>Membrane Glycoproteins</term>
<term>Receptors, Virus</term>
<term>Recombinant Proteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Carcinoembryonic Antigen</term>
<term>Gene Products, vif</term>
<term>Membrane Glycoproteins</term>
<term>Receptors, Virus</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Cats</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Membrane Fusion</term>
<term>Mice</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Murine hepatitis coronavirus (MHV)-A59 infection depends on the interaction of its spike (S) protein with the cellular receptor mCEACAM1a present on murine cells. Human cells lack this receptor and are therefore not susceptible to MHV. Specific alleviation of the tropism barrier by redirecting MHV to a tumor-specific receptor could lead to a virus with appealing properties for tumor therapy. To demonstrate that MHV can be retargeted to a nonnative receptor on human cells, we produced bispecific adapter proteins composed of the N-terminal D1 domain of mCEACAM1a linked to a short targeting peptide, the six-amino-acid His tag. Preincubation of MHV with the adapter proteins and subsequent inoculation of human cells expressing an artificial His receptor resulted in infection of these otherwise nonsusceptible cells and led to subsequent production of progeny virus. To generate a self-targeted virus able to establish multiround infection of the target cells, we subsequently incorporated the gene encoding the bispecific adapter protein as an additional expression cassette into the MHV genome through targeted RNA recombination. When inoculated onto murine LR7 cells, the resulting recombinant virus indeed expressed the adapter protein. Furthermore, inoculation of human target cells with the virus resulted in a His receptor-specific infection that was multiround. Extensive cell-cell fusion and rapid cell killing of infected target cells was observed. Our results show that MHV can be genetically redirected via adapters composed of the S protein binding part of mCEACAM1a and a targeting peptide recognizing a nonnative receptor expressed on human cells, consequently leading to rapid cell death. The results provide interesting leads for further investigations of the use of coronaviruses as antitumor agents.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16415002</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>80</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2006</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter.</ArticleTitle>
<Pagination>
<MedlinePgn>1250-60</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Murine hepatitis coronavirus (MHV)-A59 infection depends on the interaction of its spike (S) protein with the cellular receptor mCEACAM1a present on murine cells. Human cells lack this receptor and are therefore not susceptible to MHV. Specific alleviation of the tropism barrier by redirecting MHV to a tumor-specific receptor could lead to a virus with appealing properties for tumor therapy. To demonstrate that MHV can be retargeted to a nonnative receptor on human cells, we produced bispecific adapter proteins composed of the N-terminal D1 domain of mCEACAM1a linked to a short targeting peptide, the six-amino-acid His tag. Preincubation of MHV with the adapter proteins and subsequent inoculation of human cells expressing an artificial His receptor resulted in infection of these otherwise nonsusceptible cells and led to subsequent production of progeny virus. To generate a self-targeted virus able to establish multiround infection of the target cells, we subsequently incorporated the gene encoding the bispecific adapter protein as an additional expression cassette into the MHV genome through targeted RNA recombination. When inoculated onto murine LR7 cells, the resulting recombinant virus indeed expressed the adapter protein. Furthermore, inoculation of human target cells with the virus resulted in a His receptor-specific infection that was multiround. Extensive cell-cell fusion and rapid cell killing of infected target cells was observed. Our results show that MHV can be genetically redirected via adapters composed of the S protein binding part of mCEACAM1a and a targeting peptide recognizing a nonnative receptor expressed on human cells, consequently leading to rapid cell death. The results provide interesting leads for further investigations of the use of coronaviruses as antitumor agents.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Verheije</LastName>
<ForeName>M H</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Würdinger</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van Beusechem</LastName>
<ForeName>V W</ForeName>
<Initials>VW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de Haan</LastName>
<ForeName>C A M</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gerritsen</LastName>
<ForeName>W R</ForeName>
<Initials>WR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rottier</LastName>
<ForeName>P J M</ForeName>
<Initials>PJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002272">Carcinoembryonic Antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C486183">Ceacam1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004274">DNA, Recombinant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016346">Gene Products, vif</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002272" MajorTopicYN="N">Carcinoembryonic Antigen</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002415" MajorTopicYN="N">Cats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004274" MajorTopicYN="N">DNA, Recombinant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016346" MajorTopicYN="N">Gene Products, vif</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008561" MajorTopicYN="N">Membrane Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16415002</ArticleId>
<ArticleId IdType="pii">80/3/1250</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.80.3.1250-1260.2006</ArticleId>
<ArticleId IdType="pmc">PMC1346946</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Drug Discov Today. 2004 Sep 1;9(17):759-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1981 Nov;40(2):350-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6275093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3095828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Jan;64(1):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2403441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1648219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Dec;65(12):6881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1719235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Oct;66(10):6194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1326665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Nov;191(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1413526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Jan;67(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8380065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1716-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8383324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Jul;68(7):4525-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8207827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Sep;68(9):5403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7520090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1996 Aug;77 ( Pt 8):1683-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8760415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1997 Jan;22(1):140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Apr;71(4):3129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Mar 17;229(2):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9126247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Jun;71(6):4782-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9151872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Mar;72(3):1844-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9499035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Mar;72(3):1941-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9499047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Sep;72(9):7237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9696818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:3-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:11-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:549-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Dec;72(12):9706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 May;17(5):470-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 1999 Oct;10(5):454-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2005 Apr;11(4):617-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15771964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2005 Jun 15;65(12):5292-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2005 Sep;12(18):1394-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15843808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15314-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Jun;70(6):4142-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8648757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Feb;74(3):1393-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10627550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Aug;74(15):6875-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2000 May;1(5 Pt 1):391-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Nov;74(21):9928-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Mar;75(5):2087-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vasc Res. 2001 Jul-Aug;38(4):315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11455202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1999 Nov 1;252(2):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11501563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Feb;76(3):950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Feb;76(4):1892-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11799184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 May 1;21(9):2076-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11980704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Apr 25;296(1):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Gene Ther. 2002 Sep;2(3):273-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2002 Sep;3(9):899-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Dec;76(23):11819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Dec;76(24):12491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12438575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jan;77(2):830-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jan;77(2):841-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2003 Apr 1;101(7):2557-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12433686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2003 Apr;7(4):515-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12727115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Gene Ther. 2003 Aug;10(8):583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12872139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Nov;77(21):11312-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14557617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(1):216-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Feb;69(2):889-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7815557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 1995 Nov;2(9):660-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8548556</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002381 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002381 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16415002
   |texte=   Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16415002" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021