Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity.

Identifieur interne : 002380 ( PubMed/Corpus ); précédent : 002379; suivant : 002381

Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity.

Auteurs : Edward B. Thorp ; Joseph A. Boscarino ; Hillary L. Logan ; Jeffrey T. Goletz ; Thomas M. Gallagher

Source :

RBID : pubmed:16415005

English descriptors

Abstract

Coronavirus spike (S) proteins are palmitoylated at several cysteine residues clustered near their transmembrane-spanning domains. This is achieved by cellular palmitoyl acyltransferases (PATs), which can modify newly synthesized S proteins before they are assembled into virion envelopes at the intermediate compartment of the exocytic pathway. To address the importance of these fatty acylations to coronavirus infection, we exposed infected cells to 2-bromopalmitate (2-BP), a specific PAT inhibitor. 2-BP profoundly reduced the specific infectivities of murine coronaviruses at very low, nontoxic doses that were inert to alphavirus and rhabdovirus infections. 2-BP effected only two- to fivefold reductions in S palmitoylation, yet this correlated with reduced S complexing with virion membrane (M) proteins and consequent exclusion of S from virions. At defined 2-BP doses, underpalmitoylated S proteins instead trafficked to infected cell surfaces and elicited cell-cell membrane fusions, suggesting that the acyl chain adducts are more critical to virion assembly than to S-induced syncytial developments. These studies involving pharmacologic inhibition of S protein palmitoylation were complemented with molecular genetic analyses in which cysteine acylation substrates were mutated. Notably, some mutations (C1347F and C1348S) did not interfere with S incorporation into virions, indicating that only a subset of the cysteine-rich region provides the essential S-assembly functions. However, the C1347F/C1348S mutant viruses exhibited relatively low specific infectivities, similar to virions secreted from 2-BP-treated cultures. Our collective results indicate that the palmitate adducts on coronavirus S proteins are necessary in assembly and also in positioning the assembled envelope proteins for maximal infectivity.

DOI: 10.1128/JVI.80.3.1280-1289.2006
PubMed: 16415005

Links to Exploration step

pubmed:16415005

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity.</title>
<author>
<name sortKey="Thorp, Edward B" sort="Thorp, Edward B" uniqKey="Thorp E" first="Edward B" last="Thorp">Edward B. Thorp</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boscarino, Joseph A" sort="Boscarino, Joseph A" uniqKey="Boscarino J" first="Joseph A" last="Boscarino">Joseph A. Boscarino</name>
</author>
<author>
<name sortKey="Logan, Hillary L" sort="Logan, Hillary L" uniqKey="Logan H" first="Hillary L" last="Logan">Hillary L. Logan</name>
</author>
<author>
<name sortKey="Goletz, Jeffrey T" sort="Goletz, Jeffrey T" uniqKey="Goletz J" first="Jeffrey T" last="Goletz">Jeffrey T. Goletz</name>
</author>
<author>
<name sortKey="Gallagher, Thomas M" sort="Gallagher, Thomas M" uniqKey="Gallagher T" first="Thomas M" last="Gallagher">Thomas M. Gallagher</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16415005</idno>
<idno type="pmid">16415005</idno>
<idno type="doi">10.1128/JVI.80.3.1280-1289.2006</idno>
<idno type="wicri:Area/PubMed/Corpus">002380</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002380</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity.</title>
<author>
<name sortKey="Thorp, Edward B" sort="Thorp, Edward B" uniqKey="Thorp E" first="Edward B" last="Thorp">Edward B. Thorp</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boscarino, Joseph A" sort="Boscarino, Joseph A" uniqKey="Boscarino J" first="Joseph A" last="Boscarino">Joseph A. Boscarino</name>
</author>
<author>
<name sortKey="Logan, Hillary L" sort="Logan, Hillary L" uniqKey="Logan H" first="Hillary L" last="Logan">Hillary L. Logan</name>
</author>
<author>
<name sortKey="Goletz, Jeffrey T" sort="Goletz, Jeffrey T" uniqKey="Goletz J" first="Jeffrey T" last="Goletz">Jeffrey T. Goletz</name>
</author>
<author>
<name sortKey="Gallagher, Thomas M" sort="Gallagher, Thomas M" uniqKey="Gallagher T" first="Thomas M" last="Gallagher">Thomas M. Gallagher</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acylation</term>
<term>Acyltransferases (antagonists & inhibitors)</term>
<term>Acyltransferases (metabolism)</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Cricetinae</term>
<term>Enzyme Inhibitors (pharmacology)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (physiology)</term>
<term>Mice</term>
<term>Murine hepatitis virus (genetics)</term>
<term>Murine hepatitis virus (pathogenicity)</term>
<term>Murine hepatitis virus (physiology)</term>
<term>Palmitates (pharmacology)</term>
<term>Palmitic Acids (chemistry)</term>
<term>Protein Processing, Post-Translational</term>
<term>Recombination, Genetic</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (physiology)</term>
<term>Viral Matrix Proteins (physiology)</term>
<term>Virulence (drug effects)</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Acyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Palmitic Acids</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Enzyme Inhibitors</term>
<term>Palmitates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acylation</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Cricetinae</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Protein Processing, Post-Translational</term>
<term>Recombination, Genetic</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Virus Assembly</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronavirus spike (S) proteins are palmitoylated at several cysteine residues clustered near their transmembrane-spanning domains. This is achieved by cellular palmitoyl acyltransferases (PATs), which can modify newly synthesized S proteins before they are assembled into virion envelopes at the intermediate compartment of the exocytic pathway. To address the importance of these fatty acylations to coronavirus infection, we exposed infected cells to 2-bromopalmitate (2-BP), a specific PAT inhibitor. 2-BP profoundly reduced the specific infectivities of murine coronaviruses at very low, nontoxic doses that were inert to alphavirus and rhabdovirus infections. 2-BP effected only two- to fivefold reductions in S palmitoylation, yet this correlated with reduced S complexing with virion membrane (M) proteins and consequent exclusion of S from virions. At defined 2-BP doses, underpalmitoylated S proteins instead trafficked to infected cell surfaces and elicited cell-cell membrane fusions, suggesting that the acyl chain adducts are more critical to virion assembly than to S-induced syncytial developments. These studies involving pharmacologic inhibition of S protein palmitoylation were complemented with molecular genetic analyses in which cysteine acylation substrates were mutated. Notably, some mutations (C1347F and C1348S) did not interfere with S incorporation into virions, indicating that only a subset of the cysteine-rich region provides the essential S-assembly functions. However, the C1347F/C1348S mutant viruses exhibited relatively low specific infectivities, similar to virions secreted from 2-BP-treated cultures. Our collective results indicate that the palmitate adducts on coronavirus S proteins are necessary in assembly and also in positioning the assembled envelope proteins for maximal infectivity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16415005</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>80</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2006</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity.</ArticleTitle>
<Pagination>
<MedlinePgn>1280-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Coronavirus spike (S) proteins are palmitoylated at several cysteine residues clustered near their transmembrane-spanning domains. This is achieved by cellular palmitoyl acyltransferases (PATs), which can modify newly synthesized S proteins before they are assembled into virion envelopes at the intermediate compartment of the exocytic pathway. To address the importance of these fatty acylations to coronavirus infection, we exposed infected cells to 2-bromopalmitate (2-BP), a specific PAT inhibitor. 2-BP profoundly reduced the specific infectivities of murine coronaviruses at very low, nontoxic doses that were inert to alphavirus and rhabdovirus infections. 2-BP effected only two- to fivefold reductions in S palmitoylation, yet this correlated with reduced S complexing with virion membrane (M) proteins and consequent exclusion of S from virions. At defined 2-BP doses, underpalmitoylated S proteins instead trafficked to infected cell surfaces and elicited cell-cell membrane fusions, suggesting that the acyl chain adducts are more critical to virion assembly than to S-induced syncytial developments. These studies involving pharmacologic inhibition of S protein palmitoylation were complemented with molecular genetic analyses in which cysteine acylation substrates were mutated. Notably, some mutations (C1347F and C1348S) did not interfere with S incorporation into virions, indicating that only a subset of the cysteine-rich region provides the essential S-assembly functions. However, the C1347F/C1348S mutant viruses exhibited relatively low specific infectivities, similar to virions secreted from 2-BP-treated cultures. Our collective results indicate that the palmitate adducts on coronavirus S proteins are necessary in assembly and also in positioning the assembled envelope proteins for maximal infectivity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Thorp</LastName>
<ForeName>Edward B</ForeName>
<Initials>EB</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boscarino</LastName>
<ForeName>Joseph A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Logan</LastName>
<ForeName>Hillary L</ForeName>
<Initials>HL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Goletz</LastName>
<ForeName>Jeffrey T</ForeName>
<Initials>JT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gallagher</LastName>
<ForeName>Thomas M</ForeName>
<Initials>TM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NIH 60030</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010168">Palmitates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010169">Palmitic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>18263-25-7</RegistryNumber>
<NameOfSubstance UI="C022776">2-bromopalmitate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.-</RegistryNumber>
<NameOfSubstance UI="D000217">Acyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000215" MajorTopicYN="N">Acylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000217" MajorTopicYN="N">Acyltransferases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010168" MajorTopicYN="N">Palmitates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010169" MajorTopicYN="N">Palmitic Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="N">Virus Assembly</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16415005</ArticleId>
<ArticleId IdType="pii">80/3/1280</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.80.3.1280-1289.2006</ArticleId>
<ArticleId IdType="pmc">PMC1346925</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Jan 7;275(1):261-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):6449-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15858028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Mar 6;148(5):997-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10704449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Mar 30;269(1):212-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13523-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11095714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Mar;75(6):2792-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Jun 1;498(1):57-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11389898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 Oct 25;289(2):230-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2002 Feb;291(6-7):433-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11890541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2002 Sep 1;308(1):160-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Apr 10;540(1-3):101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12681491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jun;77(11):6265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12743283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Oct;77(19):10260-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14610-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 22;427(6972):307-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14737155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Mar;78(6):2682-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):6048-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2004;73:559-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9904-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2004;37:217-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15376622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1972 Oct;6(4):501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4564284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Neurol. 1973 May;28(5):298-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4348723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1979;59(1-2):25-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">218534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1984 Feb;133(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6322437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1984 Mar;33(2):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 Dec;56(3):904-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1987;95(1-2):123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3036041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Jul;7(7):2538-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3112559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1987;218:169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2829526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Dec;185(2):875-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1319065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Jan;124(1-2):55-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8294506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Sep;68(9):5748-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8057456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Oct;131(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Dec 20;214(2):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8553547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Mar;70(3):1406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8627657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 22;271(12):7154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1996 May;133(3):559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Apr;71(4):3129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Apr;72(4):3278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1998 May 18;141(4):929-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9585412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 23;273(43):28478-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:503-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 22;274(4):2038-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9890962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 5;274(6):3910-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9920947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7752-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Aug 12;1451(1):82-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10446390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:133-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Mar 18;307(5716):1746-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Apr 10;334(2):306-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Feb;74(3):1393-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10627550</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002380 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002380 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16415005
   |texte=   Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16415005" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021