Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes.

Identifieur interne : 001C64 ( PubMed/Corpus ); précédent : 001C63; suivant : 001C65

Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes.

Auteurs : Hiroshi Kikuta ; David Fredman ; Silke Rinkwitz ; Boris Lenhard ; Thomas S. Becker

Source :

RBID : pubmed:18047696

English descriptors

Abstract

A large-scale enhancer detection screen was performed in the zebrafish using a retroviral vector carrying a basal promoter and a fluorescent protein reporter cassette. Analysis of insertional hotspots uncovered areas around developmental regulatory genes in which an insertion results in the same global expression pattern, irrespective of exact position. These areas coincide with vertebrate chromosomal segments containing identical gene order; a phenomenon known as conserved synteny and thought to be a vestige of evolution. Genomic comparative studies have found large numbers of highly conserved noncoding elements (HCNEs) spanning these and other loci. HCNEs are thought to act as transcriptional enhancers based on the finding that many of those that have been tested direct tissue specific expression in transient or transgenic assays. Although gene order in hox and other gene clusters has long been known to be conserved because of shared regulatory sequences or overlapping transcriptional units, the chromosomal areas found through insertional hotspots contain only one or a few developmental regulatory genes as well as phylogenetically unrelated genes. We have termed these regions genomic regulatory blocks (GRBs), and show that they underlie the phenomenon of conserved synteny through all sequenced vertebrate genomes. After teleost whole genome duplication, a subset of GRBs were retained in two copies, underwent degenerative changes compared with tetrapod loci that exist as single copy, and that therefore can be viewed as representing the ancestral form. We discuss these findings in light of evolution of vertebrate chromosomal architecture and the identification of human disease mutations.

DOI: 10.1186/gb-2007-8-s1-s4
PubMed: 18047696

Links to Exploration step

pubmed:18047696

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes.</title>
<author>
<name sortKey="Kikuta, Hiroshi" sort="Kikuta, Hiroshi" uniqKey="Kikuta H" first="Hiroshi" last="Kikuta">Hiroshi Kikuta</name>
<affiliation>
<nlm:affiliation>Sars Centre for Marine Molecular Biology, University of Bergen, Thormoehlensgate, 5008 Bergen, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fredman, David" sort="Fredman, David" uniqKey="Fredman D" first="David" last="Fredman">David Fredman</name>
</author>
<author>
<name sortKey="Rinkwitz, Silke" sort="Rinkwitz, Silke" uniqKey="Rinkwitz S" first="Silke" last="Rinkwitz">Silke Rinkwitz</name>
</author>
<author>
<name sortKey="Lenhard, Boris" sort="Lenhard, Boris" uniqKey="Lenhard B" first="Boris" last="Lenhard">Boris Lenhard</name>
</author>
<author>
<name sortKey="Becker, Thomas S" sort="Becker, Thomas S" uniqKey="Becker T" first="Thomas S" last="Becker">Thomas S. Becker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:18047696</idno>
<idno type="pmid">18047696</idno>
<idno type="doi">10.1186/gb-2007-8-s1-s4</idno>
<idno type="wicri:Area/PubMed/Corpus">001C64</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes.</title>
<author>
<name sortKey="Kikuta, Hiroshi" sort="Kikuta, Hiroshi" uniqKey="Kikuta H" first="Hiroshi" last="Kikuta">Hiroshi Kikuta</name>
<affiliation>
<nlm:affiliation>Sars Centre for Marine Molecular Biology, University of Bergen, Thormoehlensgate, 5008 Bergen, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fredman, David" sort="Fredman, David" uniqKey="Fredman D" first="David" last="Fredman">David Fredman</name>
</author>
<author>
<name sortKey="Rinkwitz, Silke" sort="Rinkwitz, Silke" uniqKey="Rinkwitz S" first="Silke" last="Rinkwitz">Silke Rinkwitz</name>
</author>
<author>
<name sortKey="Lenhard, Boris" sort="Lenhard, Boris" uniqKey="Lenhard B" first="Boris" last="Lenhard">Boris Lenhard</name>
</author>
<author>
<name sortKey="Becker, Thomas S" sort="Becker, Thomas S" uniqKey="Becker T" first="Thomas S" last="Becker">Thomas S. Becker</name>
</author>
</analytic>
<series>
<title level="j">Genome biology</title>
<idno type="eISSN">1474-760X</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Enhancer Elements, Genetic (genetics)</term>
<term>Genome</term>
<term>Genomics (methods)</term>
<term>Mutagenesis, Insertional</term>
<term>Retroviridae (genetics)</term>
<term>Zebrafish (genetics)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Enhancer Elements, Genetic</term>
<term>Retroviridae</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genome</term>
<term>Mutagenesis, Insertional</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A large-scale enhancer detection screen was performed in the zebrafish using a retroviral vector carrying a basal promoter and a fluorescent protein reporter cassette. Analysis of insertional hotspots uncovered areas around developmental regulatory genes in which an insertion results in the same global expression pattern, irrespective of exact position. These areas coincide with vertebrate chromosomal segments containing identical gene order; a phenomenon known as conserved synteny and thought to be a vestige of evolution. Genomic comparative studies have found large numbers of highly conserved noncoding elements (HCNEs) spanning these and other loci. HCNEs are thought to act as transcriptional enhancers based on the finding that many of those that have been tested direct tissue specific expression in transient or transgenic assays. Although gene order in hox and other gene clusters has long been known to be conserved because of shared regulatory sequences or overlapping transcriptional units, the chromosomal areas found through insertional hotspots contain only one or a few developmental regulatory genes as well as phylogenetically unrelated genes. We have termed these regions genomic regulatory blocks (GRBs), and show that they underlie the phenomenon of conserved synteny through all sequenced vertebrate genomes. After teleost whole genome duplication, a subset of GRBs were retained in two copies, underwent degenerative changes compared with tetrapod loci that exist as single copy, and that therefore can be viewed as representing the ancestral form. We discuss these findings in light of evolution of vertebrate chromosomal architecture and the identification of human disease mutations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18047696</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>12</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1474-760X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8 Suppl 1</Volume>
<PubDate>
<Year>2007</Year>
</PubDate>
</JournalIssue>
<Title>Genome biology</Title>
<ISOAbbreviation>Genome Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes.</ArticleTitle>
<Pagination>
<MedlinePgn>S4</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A large-scale enhancer detection screen was performed in the zebrafish using a retroviral vector carrying a basal promoter and a fluorescent protein reporter cassette. Analysis of insertional hotspots uncovered areas around developmental regulatory genes in which an insertion results in the same global expression pattern, irrespective of exact position. These areas coincide with vertebrate chromosomal segments containing identical gene order; a phenomenon known as conserved synteny and thought to be a vestige of evolution. Genomic comparative studies have found large numbers of highly conserved noncoding elements (HCNEs) spanning these and other loci. HCNEs are thought to act as transcriptional enhancers based on the finding that many of those that have been tested direct tissue specific expression in transient or transgenic assays. Although gene order in hox and other gene clusters has long been known to be conserved because of shared regulatory sequences or overlapping transcriptional units, the chromosomal areas found through insertional hotspots contain only one or a few developmental regulatory genes as well as phylogenetically unrelated genes. We have termed these regions genomic regulatory blocks (GRBs), and show that they underlie the phenomenon of conserved synteny through all sequenced vertebrate genomes. After teleost whole genome duplication, a subset of GRBs were retained in two copies, underwent degenerative changes compared with tetrapod loci that exist as single copy, and that therefore can be viewed as representing the ancestral form. We discuss these findings in light of evolution of vertebrate chromosomal architecture and the identification of human disease mutations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kikuta</LastName>
<ForeName>Hiroshi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Sars Centre for Marine Molecular Biology, University of Bergen, Thormoehlensgate, 5008 Bergen, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fredman</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rinkwitz</LastName>
<ForeName>Silke</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lenhard</LastName>
<ForeName>Boris</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Becker</LastName>
<ForeName>Thomas S</ForeName>
<Initials>TS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol</MedlineTA>
<NlmUniqueID>100960660</NlmUniqueID>
<ISSNLinking>1474-7596</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004742" MajorTopicYN="N">Enhancer Elements, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="Y">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016254" MajorTopicYN="Y">Mutagenesis, Insertional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012190" MajorTopicYN="N">Retroviridae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>109</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18047696</ArticleId>
<ArticleId IdType="pii">gb-2007-8-s1-s4</ArticleId>
<ArticleId IdType="doi">10.1186/gb-2007-8-s1-s4</ArticleId>
<ArticleId IdType="pmc">PMC2106839</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1998 Mar 16;17(6):1788-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1998 Apr;18(4):345-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9537416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Apr 30;392(6679):920-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9582071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1998 Jun;19(2):140-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9620769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Nov 27;282(5394):1711-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9831563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1999 May;126(10):2103-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10207136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1999 Jul;65(1):111-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1999 Jun;22(2):196-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10369266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 May;15(5):692-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15867430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2005 Aug;77(2):205-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15962237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 8;309(5732):310-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15919954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Aug;21(8):421-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Aug;37(8):889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15995706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Aug;15(8):1034-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16024819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Aug;15(8):1061-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16024824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2005 Jul;2(7):535-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16170870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2005 Oct;2(10):763-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(17):5437-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2005 Oct;234(2):244-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2005 Oct;234(2):255-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16127723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Oct 15;14(20):3057-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16155111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 8;438(7069):803-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2005 Dec;4(12):1744-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16294016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jan 20;344(2):292-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16271739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Genet. 2005 Dec;118(3-4):477-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16235095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Feb;38(2):223-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Feb;16(2):164-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16365385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2006 Apr;235(4):870-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16395688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 14;312(5771):276-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 May 4;441(7089):87-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16625209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 17;302(5644):413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14563999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Jan;131(1):57-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Feb;131(4):829-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 May;36(5):492-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15107850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 May;14(5):852-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 May 28;304(5675):1321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Jun;167(2):761-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15238527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Aug 4;20 Suppl 1:i40-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15262779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Sep;36(9):955-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15300250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 2;431(7004):67-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15343333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2004 Oct;231(2):449-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15366023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2004 Sep 3;5(1):62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Oct 21;431(7011):946-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1987 Sep;101(1):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3449364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Sep;132(17):3799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16049110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Jun;38(6):601-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16736008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2006 Jun;87(6):783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jun 1;20(11):1470-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16705037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jul;16(7):855-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16769978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10369-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16801555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Sep;22(9):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Sep 1;379:141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2006 Sep 1;297(1):26-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16860306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2006 Oct 1;312(16):3108-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Growth Differ. 2006 Sep;48(7):447-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16961592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2006 Oct 1;15(19):2911-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 23;444(7118):499-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Dec 22;314(5807):1892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D668-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Genet. 2007 Jan;71(1):67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2007 Jan 15;16(2):210-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17200153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Zool B Mol Dev Evol. 2007 Jan 15;308(1):58-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16838295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Feb;17(2):201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2007 Feb;23(2):55-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17188778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Apr;80(4):692-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17357075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 May;17(5):545-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17387144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Apr;5(4):e101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Oct;61(19-20):2588-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15526164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Dec;14(12):2406-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Jan;3(1):e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15630479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jan 11;15(1):R12-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2004;5(1):99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2005 Feb 15;278(2):587-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Apr;21(4):207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15797614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Feb;18(2):181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Genet. 2000 Jun;37(6):458-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10928856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2000 Dec;67(6):1382-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Dev. 2000 Dec;99(1-2):123-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11091080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2000;78(5):593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11103950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 Dec;26(4):451-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Dec;10(12):1903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11116086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2001 Nov;78(1-2):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11707075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2002 Jan 1;11(1):33-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11772997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11792834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 28;99(11):7548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2002 Nov;71(5):1138-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12386836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Nov 14;420(6912):145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2002 Dec;71(6):1450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2003 Apr;33(4):461-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Apr;13(4):533-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12670995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4030-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12642674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 May 2;113(3):405-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1749-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jul 18;301(5631):331-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Jun 29;61(7):1257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2163761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Aug 8;352(6335):539-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1650914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurobiol. 1993 Oct;24(10):1328-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7901322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Feb 11;263(5148):802-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8303295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1993 Dec;3(6):911-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8118217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Aug 18;370(6490):563-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7914353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Apr 24;156(2):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7758964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Jun 14;85(6):841-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8681379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1996 May;5(5):571-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8733122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10858-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8855272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1996 Sep;5(9):1229-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8872461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1996 Dec;14(4):392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 Jan;15(1):36-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8988166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Apr 1;11(7):900-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9106661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C64 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001C64 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18047696
   |texte=   Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18047696" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021