Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Predicting linear B-cell epitopes using string kernels.

Identifieur interne : 001B34 ( PubMed/Corpus ); précédent : 001B33; suivant : 001B35

Predicting linear B-cell epitopes using string kernels.

Auteurs : Yasser El-Manzalawy ; Drena Dobbs ; Vasant Honavar

Source :

RBID : pubmed:18496882

English descriptors

Abstract

The identification and characterization of B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting linear B-cell epitopes are highly desirable. We evaluated Support Vector Machine (SVM) classifiers trained utilizing five different kernel methods using fivefold cross-validation on a homology-reduced data set of 701 linear B-cell epitopes, extracted from Bcipep database, and 701 non-epitopes, randomly extracted from SwissProt sequences. Based on the results of our computational experiments, we propose BCPred, a novel method for predicting linear B-cell epitopes using the subsequence kernel. We show that the predictive performance of BCPred (AUC = 0.758) outperforms 11 SVM-based classifiers developed and evaluated in our experiments as well as our implementation of AAP (AUC = 0.7), a recently proposed method for predicting linear B-cell epitopes using amino acid pair antigenicity. Furthermore, we compared BCPred with AAP and ABCPred, a method that uses recurrent neural networks, using two data sets of unique B-cell epitopes that had been previously used to evaluate ABCPred. Analysis of the data sets used and the results of this comparison show that conclusions about the relative performance of different B-cell epitope prediction methods drawn on the basis of experiments using data sets of unique B-cell epitopes are likely to yield overly optimistic estimates of performance of evaluated methods. This argues for the use of carefully homology-reduced data sets in comparing B-cell epitope prediction methods to avoid misleading conclusions about how different methods compare to each other. Our homology-reduced data set and implementations of BCPred as well as the APP method are publicly available through our web-based server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.

DOI: 10.1002/jmr.893
PubMed: 18496882

Links to Exploration step

pubmed:18496882

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Predicting linear B-cell epitopes using string kernels.</title>
<author>
<name sortKey="El Manzalawy, Yasser" sort="El Manzalawy, Yasser" uniqKey="El Manzalawy Y" first="Yasser" last="El-Manzalawy">Yasser El-Manzalawy</name>
<affiliation>
<nlm:affiliation>Artificial Intelligence Laboratory, Iowa State University, Ames, IA 50010, USA. yasser@iastate.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dobbs, Drena" sort="Dobbs, Drena" uniqKey="Dobbs D" first="Drena" last="Dobbs">Drena Dobbs</name>
</author>
<author>
<name sortKey="Honavar, Vasant" sort="Honavar, Vasant" uniqKey="Honavar V" first="Vasant" last="Honavar">Vasant Honavar</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2008 Jul-Aug</MedlineDate>
</PubDate>
</date>
<idno type="RBID">pubmed:18496882</idno>
<idno type="pmid">18496882</idno>
<idno type="doi">10.1002/jmr.893</idno>
<idno type="wicri:Area/PubMed/Corpus">001B34</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001B34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Predicting linear B-cell epitopes using string kernels.</title>
<author>
<name sortKey="El Manzalawy, Yasser" sort="El Manzalawy, Yasser" uniqKey="El Manzalawy Y" first="Yasser" last="El-Manzalawy">Yasser El-Manzalawy</name>
<affiliation>
<nlm:affiliation>Artificial Intelligence Laboratory, Iowa State University, Ames, IA 50010, USA. yasser@iastate.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dobbs, Drena" sort="Dobbs, Drena" uniqKey="Dobbs D" first="Drena" last="Dobbs">Drena Dobbs</name>
</author>
<author>
<name sortKey="Honavar, Vasant" sort="Honavar, Vasant" uniqKey="Honavar V" first="Vasant" last="Honavar">Vasant Honavar</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular recognition : JMR</title>
<idno type="ISSN">0952-3499</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Artificial Intelligence</term>
<term>Databases, Protein</term>
<term>Epitope Mapping</term>
<term>Epitopes, B-Lymphocyte (chemistry)</term>
<term>Epitopes, B-Lymphocyte (classification)</term>
<term>Epitopes, B-Lymphocyte (genetics)</term>
<term>Humans</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (immunology)</term>
<term>Molecular Sequence Data</term>
<term>Peptides (chemistry)</term>
<term>Peptides (genetics)</term>
<term>Peptides (immunology)</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (immunology)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Epitopes, B-Lymphocyte</term>
<term>Membrane Glycoproteins</term>
<term>Peptides</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Epitopes, B-Lymphocyte</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Epitopes, B-Lymphocyte</term>
<term>Membrane Glycoproteins</term>
<term>Peptides</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Peptides</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Artificial Intelligence</term>
<term>Databases, Protein</term>
<term>Epitope Mapping</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The identification and characterization of B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting linear B-cell epitopes are highly desirable. We evaluated Support Vector Machine (SVM) classifiers trained utilizing five different kernel methods using fivefold cross-validation on a homology-reduced data set of 701 linear B-cell epitopes, extracted from Bcipep database, and 701 non-epitopes, randomly extracted from SwissProt sequences. Based on the results of our computational experiments, we propose BCPred, a novel method for predicting linear B-cell epitopes using the subsequence kernel. We show that the predictive performance of BCPred (AUC = 0.758) outperforms 11 SVM-based classifiers developed and evaluated in our experiments as well as our implementation of AAP (AUC = 0.7), a recently proposed method for predicting linear B-cell epitopes using amino acid pair antigenicity. Furthermore, we compared BCPred with AAP and ABCPred, a method that uses recurrent neural networks, using two data sets of unique B-cell epitopes that had been previously used to evaluate ABCPred. Analysis of the data sets used and the results of this comparison show that conclusions about the relative performance of different B-cell epitope prediction methods drawn on the basis of experiments using data sets of unique B-cell epitopes are likely to yield overly optimistic estimates of performance of evaluated methods. This argues for the use of carefully homology-reduced data sets in comparing B-cell epitope prediction methods to avoid misleading conclusions about how different methods compare to each other. Our homology-reduced data set and implementations of BCPred as well as the APP method are publicly available through our web-based server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18496882</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>09</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0952-3499</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>21</Volume>
<Issue>4</Issue>
<PubDate>
<MedlineDate>2008 Jul-Aug</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Journal of molecular recognition : JMR</Title>
<ISOAbbreviation>J. Mol. Recognit.</ISOAbbreviation>
</Journal>
<ArticleTitle>Predicting linear B-cell epitopes using string kernels.</ArticleTitle>
<Pagination>
<MedlinePgn>243-55</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jmr.893</ELocationID>
<Abstract>
<AbstractText>The identification and characterization of B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting linear B-cell epitopes are highly desirable. We evaluated Support Vector Machine (SVM) classifiers trained utilizing five different kernel methods using fivefold cross-validation on a homology-reduced data set of 701 linear B-cell epitopes, extracted from Bcipep database, and 701 non-epitopes, randomly extracted from SwissProt sequences. Based on the results of our computational experiments, we propose BCPred, a novel method for predicting linear B-cell epitopes using the subsequence kernel. We show that the predictive performance of BCPred (AUC = 0.758) outperforms 11 SVM-based classifiers developed and evaluated in our experiments as well as our implementation of AAP (AUC = 0.7), a recently proposed method for predicting linear B-cell epitopes using amino acid pair antigenicity. Furthermore, we compared BCPred with AAP and ABCPred, a method that uses recurrent neural networks, using two data sets of unique B-cell epitopes that had been previously used to evaluate ABCPred. Analysis of the data sets used and the results of this comparison show that conclusions about the relative performance of different B-cell epitope prediction methods drawn on the basis of experiments using data sets of unique B-cell epitopes are likely to yield overly optimistic estimates of performance of evaluated methods. This argues for the use of carefully homology-reduced data sets in comparing B-cell epitope prediction methods to avoid misleading conclusions about how different methods compare to each other. Our homology-reduced data set and implementations of BCPred as well as the APP method are publicly available through our web-based server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.</AbstractText>
<CopyrightInformation>John Wiley & Sons, Ltd</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>El-Manzalawy</LastName>
<ForeName>Yasser</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Artificial Intelligence Laboratory, Iowa State University, Ames, IA 50010, USA. yasser@iastate.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dobbs</LastName>
<ForeName>Drena</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Honavar</LastName>
<ForeName>Vasant</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM066387</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 GM066387</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R33 GM066387-03</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R33 GM066387-04</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R33 GM066387</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Recognit</MedlineTA>
<NlmUniqueID>9004580</NlmUniqueID>
<ISSNLinking>0952-3499</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018985">Epitopes, B-Lymphocyte</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001185" MajorTopicYN="Y">Artificial Intelligence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030562" MajorTopicYN="N">Databases, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018604" MajorTopicYN="N">Epitope Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018985" MajorTopicYN="N">Epitopes, B-Lymphocyte</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18496882</ArticleId>
<ArticleId IdType="doi">10.1002/jmr.893</ArticleId>
<ArticleId IdType="pmc">PMC2683948</ArticleId>
<ArticleId IdType="mid">NIHMS67493</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2006 Aug 15;64(3):643-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16752418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;203:176-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1722270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 Sep;55(3):836-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2991600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Jul 6;358(3):716-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Lett. 1993 Apr;36(1):83-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7688347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1986 Sep 23;25(19):5425-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2430611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16774677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005;6:79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15921533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2004 Oct;14(5):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Mar 1;20(4):467-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Recognit. 2006 May-Jun;19(3):200-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16598694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):7195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2006 Oct 1;65(1):40-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16894596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 May;16(5):412-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10871264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1993 Sep;11(3):204-10, 191-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7509182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):45-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jul 22;20(11):1682-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17105666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 9;281(23):15829-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunogenetics. 2006 Aug;58(8):607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16832638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Jan;18(1):77-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2007 Sep;33(3):423-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17252308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Aug;13(8):751-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jan 1;21(1):39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1986 Aug 21-27;322(6081):747-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2427953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 1986 Apr 17;88(2):149-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2420900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2001 Mar 21;19(17-19):2352-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11257360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Recognit. 2003 Jan-Feb;16(1):20-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12557235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 2002;:564-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11928508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2005 Jan;14(1):246-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15576553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Recognit. 2007 Mar-Apr;20(2):75-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17205610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;409:v-vi</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18449988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Bioinformatics. 2005;4(1):45-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1999 Sep;18(3-4):311-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10506656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Dec 12;115(6):652-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunome Res. 2006 Apr 24;2:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16635264</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001B34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18496882
   |texte=   Predicting linear B-cell epitopes using string kernels.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18496882" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021