Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13.

Identifieur interne : 001657 ( PubMed/Corpus ); précédent : 001656; suivant : 001658

Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13.

Auteurs : Na-Ra Lee ; Hyun-Mi Kwon ; Kkothanahreum Park ; Sangtaek Oh ; Yong-Joo Jeong ; Dong-Eun Kim

Source :

RBID : pubmed:20671029

English descriptors

Abstract

SARS coronavirus encodes non-structural protein 13 (nsP13), a nucleic acid helicase/NTPase belonging to superfamily 1 helicase, which efficiently unwinds both partial-duplex RNA and DNA. In this study, unwinding of DNA substrates that had different duplex lengths and 5'-overhangs was examined under single-turnover reaction conditions in the presence of excess enzyme. The amount of DNA unwound decreased significantly as the length of the duplex increased, indicating a poor in vitro processivity. However, the quantity of duplex DNA unwound increased as the length of the single-stranded 5'-tail increased for the 50-bp duplex. This enhanced processivity was also observed for duplex DNA that had a longer single-stranded gap in between. These results demonstrate that nsP13 requires the presence of a long 5'-overhang to unwind longer DNA duplexes. In addition, enhanced DNA unwinding was observed for gapped DNA substrates that had a 5'-overhang, indicating that the translocated nsP13 molecules pile up and the preceding helicase facilitate DNA unwinding. Together with the propensity of oligomer formation of nsP13 molecules, we propose that the cooperative translocation by the functionally interacting oligomers of the helicase molecules loaded onto the 5'-overhang account for the observed enhanced processivity of DNA unwinding.

DOI: 10.1093/nar/gkq647
PubMed: 20671029

Links to Exploration step

pubmed:20671029

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13.</title>
<author>
<name sortKey="Lee, Na Ra" sort="Lee, Na Ra" uniqKey="Lee N" first="Na-Ra" last="Lee">Na-Ra Lee</name>
<affiliation>
<nlm:affiliation>Department of Bio and Nanochemistry, Kookmin University, Seoul 136-702, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kwon, Hyun Mi" sort="Kwon, Hyun Mi" uniqKey="Kwon H" first="Hyun-Mi" last="Kwon">Hyun-Mi Kwon</name>
</author>
<author>
<name sortKey="Park, Kkothanahreum" sort="Park, Kkothanahreum" uniqKey="Park K" first="Kkothanahreum" last="Park">Kkothanahreum Park</name>
</author>
<author>
<name sortKey="Oh, Sangtaek" sort="Oh, Sangtaek" uniqKey="Oh S" first="Sangtaek" last="Oh">Sangtaek Oh</name>
</author>
<author>
<name sortKey="Jeong, Yong Joo" sort="Jeong, Yong Joo" uniqKey="Jeong Y" first="Yong-Joo" last="Jeong">Yong-Joo Jeong</name>
</author>
<author>
<name sortKey="Kim, Dong Eun" sort="Kim, Dong Eun" uniqKey="Kim D" first="Dong-Eun" last="Kim">Dong-Eun Kim</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20671029</idno>
<idno type="pmid">20671029</idno>
<idno type="doi">10.1093/nar/gkq647</idno>
<idno type="wicri:Area/PubMed/Corpus">001657</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001657</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13.</title>
<author>
<name sortKey="Lee, Na Ra" sort="Lee, Na Ra" uniqKey="Lee N" first="Na-Ra" last="Lee">Na-Ra Lee</name>
<affiliation>
<nlm:affiliation>Department of Bio and Nanochemistry, Kookmin University, Seoul 136-702, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kwon, Hyun Mi" sort="Kwon, Hyun Mi" uniqKey="Kwon H" first="Hyun-Mi" last="Kwon">Hyun-Mi Kwon</name>
</author>
<author>
<name sortKey="Park, Kkothanahreum" sort="Park, Kkothanahreum" uniqKey="Park K" first="Kkothanahreum" last="Park">Kkothanahreum Park</name>
</author>
<author>
<name sortKey="Oh, Sangtaek" sort="Oh, Sangtaek" uniqKey="Oh S" first="Sangtaek" last="Oh">Sangtaek Oh</name>
</author>
<author>
<name sortKey="Jeong, Yong Joo" sort="Jeong, Yong Joo" uniqKey="Jeong Y" first="Yong-Joo" last="Jeong">Yong-Joo Jeong</name>
</author>
<author>
<name sortKey="Kim, Dong Eun" sort="Kim, Dong Eun" uniqKey="Kim D" first="Dong-Eun" last="Kim">Dong-Eun Kim</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA (chemistry)</term>
<term>DNA (metabolism)</term>
<term>DNA Helicases (metabolism)</term>
<term>Kinetics</term>
<term>SARS Virus (enzymology)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA</term>
<term>DNA Helicases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">SARS coronavirus encodes non-structural protein 13 (nsP13), a nucleic acid helicase/NTPase belonging to superfamily 1 helicase, which efficiently unwinds both partial-duplex RNA and DNA. In this study, unwinding of DNA substrates that had different duplex lengths and 5'-overhangs was examined under single-turnover reaction conditions in the presence of excess enzyme. The amount of DNA unwound decreased significantly as the length of the duplex increased, indicating a poor in vitro processivity. However, the quantity of duplex DNA unwound increased as the length of the single-stranded 5'-tail increased for the 50-bp duplex. This enhanced processivity was also observed for duplex DNA that had a longer single-stranded gap in between. These results demonstrate that nsP13 requires the presence of a long 5'-overhang to unwind longer DNA duplexes. In addition, enhanced DNA unwinding was observed for gapped DNA substrates that had a 5'-overhang, indicating that the translocated nsP13 molecules pile up and the preceding helicase facilitate DNA unwinding. Together with the propensity of oligomer formation of nsP13 molecules, we propose that the cooperative translocation by the functionally interacting oligomers of the helicase molecules loaded onto the 5'-overhang account for the observed enhanced processivity of DNA unwinding.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20671029</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>01</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13.</ArticleTitle>
<Pagination>
<MedlinePgn>7626-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkq647</ELocationID>
<Abstract>
<AbstractText>SARS coronavirus encodes non-structural protein 13 (nsP13), a nucleic acid helicase/NTPase belonging to superfamily 1 helicase, which efficiently unwinds both partial-duplex RNA and DNA. In this study, unwinding of DNA substrates that had different duplex lengths and 5'-overhangs was examined under single-turnover reaction conditions in the presence of excess enzyme. The amount of DNA unwound decreased significantly as the length of the duplex increased, indicating a poor in vitro processivity. However, the quantity of duplex DNA unwound increased as the length of the single-stranded 5'-tail increased for the 50-bp duplex. This enhanced processivity was also observed for duplex DNA that had a longer single-stranded gap in between. These results demonstrate that nsP13 requires the presence of a long 5'-overhang to unwind longer DNA duplexes. In addition, enhanced DNA unwinding was observed for gapped DNA substrates that had a 5'-overhang, indicating that the translocated nsP13 molecules pile up and the preceding helicase facilitate DNA unwinding. Together with the propensity of oligomer formation of nsP13 molecules, we propose that the cooperative translocation by the functionally interacting oligomers of the helicase molecules loaded onto the 5'-overhang account for the observed enhanced processivity of DNA unwinding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Na-Ra</ForeName>
<Initials>NR</Initials>
<AffiliationInfo>
<Affiliation>Department of Bio and Nanochemistry, Kookmin University, Seoul 136-702, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kwon</LastName>
<ForeName>Hyun-Mi</ForeName>
<Initials>HM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Kkothanahreum</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oh</LastName>
<ForeName>Sangtaek</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jeong</LastName>
<ForeName>Yong-Joo</ForeName>
<Initials>YJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Dong-Eun</ForeName>
<Initials>DE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.-</RegistryNumber>
<NameOfSubstance UI="D004265">DNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004265" MajorTopicYN="N">DNA Helicases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20671029</ArticleId>
<ArticleId IdType="pii">gkq647</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkq647</ArticleId>
<ArticleId IdType="pmc">PMC2995068</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2002 Apr;8(4):386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11927945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jan 17;275(5298):377-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2002 Sep;55(3):397-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2008 Dec 15;9(18):3037-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19031435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2009 Mar 15;19(6):1636-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19233643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Aug 22;90(4):635-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9288744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 19;272(51):32267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Apr 2;97(1):75-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10199404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Dec 10;344(5):1287-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15561144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10797-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2005 Mar;12(3):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15797214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 19;435(7040):370-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15902262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Oct 4;44(39):12990-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16185067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2005 Oct;4(10):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16184083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 May 19;343(4):1101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16579970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 7;281(27):18265-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Aided Mol Des. 2006 May;20(5):305-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16972168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jan 27;403(6768):447-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10667799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:651-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jul 6;310(2):327-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11428893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Mar 1;21(5):1168-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11867545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2007;46(34):6464-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 14;282(37):27076-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2007 Nov 14;(42):4413-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17957304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Feb 15;366(3):738-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18082623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26005-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Jun 26;17(12):4847-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2526320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:169-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2002 Apr;8(4):392-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11927946</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001657 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001657 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20671029
   |texte=   Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20671029" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021