Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins.

Identifieur interne : 000E14 ( PubMed/Corpus ); précédent : 000E13; suivant : 000E15

A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins.

Auteurs : Adriaan H. De Wilde ; Kazimier F. Wannee ; Florine E M. Scholte ; Jelle J. Goeman ; Peter Ten Dijke ; Eric J. Snijder ; Marjolein Kikkert ; Martijn J. Van Hemert

Source :

RBID : pubmed:26041291

English descriptors

Abstract

To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy.

DOI: 10.1128/JVI.01029-15
PubMed: 26041291

Links to Exploration step

pubmed:26041291

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins.</title>
<author>
<name sortKey="De Wilde, Adriaan H" sort="De Wilde, Adriaan H" uniqKey="De Wilde A" first="Adriaan H" last="De Wilde">Adriaan H. De Wilde</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wannee, Kazimier F" sort="Wannee, Kazimier F" uniqKey="Wannee K" first="Kazimier F" last="Wannee">Kazimier F. Wannee</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scholte, Florine E M" sort="Scholte, Florine E M" uniqKey="Scholte F" first="Florine E M" last="Scholte">Florine E M. Scholte</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goeman, Jelle J" sort="Goeman, Jelle J" uniqKey="Goeman J" first="Jelle J" last="Goeman">Jelle J. Goeman</name>
<affiliation>
<nlm:affiliation>Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ten Dijke, Peter" sort="Ten Dijke, Peter" uniqKey="Ten Dijke P" first="Peter" last="Ten Dijke">Peter Ten Dijke</name>
<affiliation>
<nlm:affiliation>Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kikkert, Marjolein" sort="Kikkert, Marjolein" uniqKey="Kikkert M" first="Marjolein" last="Kikkert">Marjolein Kikkert</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.j.van_hemert@lumc.nl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Hemert, Martijn J" sort="Van Hemert, Martijn J" uniqKey="Van Hemert M" first="Martijn J" last="Van Hemert">Martijn J. Van Hemert</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.j.van_hemert@lumc.nl.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26041291</idno>
<idno type="pmid">26041291</idno>
<idno type="doi">10.1128/JVI.01029-15</idno>
<idno type="wicri:Area/PubMed/Corpus">000E14</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins.</title>
<author>
<name sortKey="De Wilde, Adriaan H" sort="De Wilde, Adriaan H" uniqKey="De Wilde A" first="Adriaan H" last="De Wilde">Adriaan H. De Wilde</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wannee, Kazimier F" sort="Wannee, Kazimier F" uniqKey="Wannee K" first="Kazimier F" last="Wannee">Kazimier F. Wannee</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scholte, Florine E M" sort="Scholte, Florine E M" uniqKey="Scholte F" first="Florine E M" last="Scholte">Florine E M. Scholte</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goeman, Jelle J" sort="Goeman, Jelle J" uniqKey="Goeman J" first="Jelle J" last="Goeman">Jelle J. Goeman</name>
<affiliation>
<nlm:affiliation>Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ten Dijke, Peter" sort="Ten Dijke, Peter" uniqKey="Ten Dijke P" first="Peter" last="Ten Dijke">Peter Ten Dijke</name>
<affiliation>
<nlm:affiliation>Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kikkert, Marjolein" sort="Kikkert, Marjolein" uniqKey="Kikkert M" first="Marjolein" last="Kikkert">Marjolein Kikkert</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.j.van_hemert@lumc.nl.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Hemert, Martijn J" sort="Van Hemert, Martijn J" uniqKey="Van Hemert M" first="Martijn J" last="Van Hemert">Martijn J. Van Hemert</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.j.van_hemert@lumc.nl.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus (pathogenicity)</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Vero Cells</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Protein Kinases</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Vero Cells</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26041291</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>8318-33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01029-15</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">To identify host factors relevant for severe acute respiratory syndrome-coronavirus (SARS-CoV) replication, we performed a small interfering RNA (siRNA) library screen targeting the human kinome. Protein kinases are key regulators of many cellular functions, and the systematic knockdown of their expression should provide a broad perspective on factors and pathways promoting or antagonizing coronavirus replication. In addition to 40 proteins that promote SARS-CoV replication, our study identified 90 factors exhibiting an antiviral effect. Pathway analysis grouped subsets of these factors in specific cellular processes, including the innate immune response and the metabolism of complex lipids, which appear to play a role in SARS-CoV infection. Several factors were selected for in-depth validation in follow-up experiments. In cells depleted for the β2 subunit of the coatomer protein complex (COPB2), the strongest proviral hit, we observed reduced SARS-CoV protein expression and a >2-log reduction in virus yield. Knockdown of the COPB2-related proteins COPB1 and Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) also suggested that COPI-coated vesicles and/or the early secretory pathway are important for SARS-CoV replication. Depletion of the antiviral double-stranded RNA-activated protein kinase (PKR) enhanced virus replication in the primary screen, and validation experiments confirmed increased SARS-CoV protein expression and virus production upon PKR depletion. In addition, cyclin-dependent kinase 6 (CDK6) was identified as a novel antiviral host factor in SARS-CoV replication. The inventory of pro- and antiviral host factors and pathways described here substantiates and expands our understanding of SARS-CoV replication and may contribute to the identification of novel targets for antiviral therapy.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">Replication of all viruses, including SARS-CoV, depends on and is influenced by cellular pathways. Although substantial progress has been made in dissecting the coronavirus replicative cycle, our understanding of the host factors that stimulate (proviral factors) or restrict (antiviral factors) infection remains far from complete. To study the role of host proteins in SARS-CoV infection, we set out to systematically identify kinase-regulated processes that influence virus replication. Protein kinases are key regulators in signal transduction, controlling a wide variety of cellular processes, and many of them are targets of approved drugs and other compounds. Our screen identified a variety of hits and will form the basis for more detailed follow-up studies that should contribute to a better understanding of SARS-CoV replication and coronavirus-host interactions in general. The identified factors could be interesting targets for the development of host-directed antiviral therapy to treat infections with SARS-CoV or other pathogenic coronaviruses.</AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>de Wilde</LastName>
<ForeName>Adriaan H</ForeName>
<Initials>AH</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wannee</LastName>
<ForeName>Kazimier F</ForeName>
<Initials>KF</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scholte</LastName>
<ForeName>Florine E M</ForeName>
<Initials>FE</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goeman</LastName>
<ForeName>Jelle J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ten Dijke</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Snijder</LastName>
<ForeName>Eric J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kikkert</LastName>
<ForeName>Marjolein</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.j.van_hemert@lumc.nl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Hemert</LastName>
<ForeName>Martijn J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands m.kikkert@lumc.nl m.j.van_hemert@lumc.nl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26041291</ArticleId>
<ArticleId IdType="pii">JVI.01029-15</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01029-15</ArticleId>
<ArticleId IdType="pmc">PMC4524262</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2014 Aug;10(8):e1004320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 May;5(5):e1000437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19478882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Oct;2(10):e102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17040126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2006 Apr;117(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Apr 23;458(7241):1047-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(6):2554-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jul;82(14):7212-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18448520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 11;463(7282):818-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20081832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2014 Nov;22(11):642-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25037114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jun;76(12):5937-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12021326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3051-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):558-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Mar;83(5):2298-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19109397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2008 Feb;77(2):150-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(2):913-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(18):9812-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(21):11113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):14043-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 1;277(5):3334-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jan;84(2):833-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Mar 1;346(1):74-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16303160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Feb;12(2):137-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jan;80(2):785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16378980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2009 Dec;1(3):523-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Jan 23;53(2):193-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24389100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2008 Aug;89(Pt 8):1960-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002090</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21695242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e51847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Ther. 2007;12(4 Pt B):651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci (Landmark Ed). 2009;14:2386-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19273207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 31;281(13):8436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2007 Jun;45(6):1413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17518369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(13):6723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Feb;10(2):137-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22183253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2012 Feb;93(Pt 2):275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22012463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Jun 25;7(6):500-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15511-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Feb;21(4):1218-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Mar 19;5(3):298-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Oct;110:20-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25046486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 Jan;11(1):64-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21182195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Feb;87(3):1454-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23152531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):980-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2015 Jul;15(13):2267-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25764339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 14;454(7206):890-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18615016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2011 Mar;75(1):50-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21372320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(7):e69374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Dec 15;173(12):7602-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15585888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 May;6(5):363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Jan 20;9(1):70-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21238948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Aug;84(16):8262-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e38035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22662263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Feb 1;66(3):1767-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2011 May;43(5):784-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21315177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2006 Aug;8(8):1211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16803585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 22;281(38):28450-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Jan 20;9(1):32-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21238945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2000 Sep;1(9):702-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11208158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Sep 1;23(5):631-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2006 Feb;16(2):220-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16474437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 Nov 25;420(2):106-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Sep 3;583(17):2701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19631211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Aug;84(15):7535-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20504936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 21;281(16):10669-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16431923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Jun;4(6):e1000088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18551169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12884-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jan 4;283(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jun;82(11):5279-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2000 Mar;10(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10765979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2008 Nov 13;4(5):495-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 May 28;141(5):799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20510927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12323-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Apr 13;316(5822):222-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Mar 1;20(5):515-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Oct 25;380(2):312-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18760437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(7):R66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16869968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e32857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22412934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov;10(11):e1004502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Dec;83(23):12462-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19776135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 13;283(24):16525-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18411274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Mar;16(3):1213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5658-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):7207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Feb 15;19(4):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Sep 1;365(2):324-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17490702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E14 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E14 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26041291
   |texte=   A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26041291" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021