Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis.

Identifieur interne : 000E13 ( PubMed/Corpus ); précédent : 000E12; suivant : 000E14

Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis.

Auteurs : Yi Wang ; Ying Sun ; Andong Wu ; Shan Xu ; Ruangang Pan ; Cong Zeng ; Xu Jin ; Xingyi Ge ; Zhengli Shi ; Tero Ahola ; Yu Chen ; Deyin Guo

Source :

RBID : pubmed:26041293

English descriptors

Abstract

The 5' cap structures of eukaryotic mRNAs are important for RNA stability and protein translation. Many viruses that replicate in the cytoplasm of eukaryotes have evolved 2'-O-methyltransferases (2'-O-MTase) to autonomously modify their mRNAs and carry a cap-1 structure (m7GpppNm) at the 5' end, thereby facilitating viral replication and escaping innate immune recognition in host cells. Previous studies showed that the 2'-O-MTase activity of severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 16 (nsp16) needs to be activated by nsp10, whereas nsp16 of feline coronavirus (FCoV) alone possesses 2'-O-MTase activity (E. Decroly et al., J Virol 82:8071-8084, 2008, http://dx.doi.org/10.1128/JVI.00407-08; M. Bouvet et al., PLoS Pathog 6:e1000863, 2010, http://dx.doi.org/10.1371/journal.ppat.1000863; E. Decroly et al., PLoS Pathog 7:e1002059, 2011, http://dx.doi.org/10.1371/journal.ppat.1002059; Y. Chen et al., PLoS Pathog 7:e1002294, 2011, http://dx.doi.org/10.1371/journal.ppat.1002294) . In this study, we demonstrate that stimulation of nsp16 2'-O-MTase activity by nsp10 is a universal and conserved mechanism in coronaviruses, including FCoV, and that nsp10 is functionally interchangeable in the stimulation of nsp16 of different coronaviruses. Based on our current and previous studies, we designed a peptide (TP29) from the sequence of the interaction interface of mouse hepatitis virus (MHV) nsp10 and demonstrated that the peptide inhibits the 2'-O-MTase activity of different coronaviruses in biochemical assays and the viral replication in MHV infection and SARS-CoV replicon models. Interestingly, the peptide TP29 exerted robust inhibitory effects in vivo in MHV-infected mice by impairing MHV virulence and pathogenesis through suppressing virus replication and enhancing type I interferon production at an early stage of infection. Therefore, as a proof of principle, the current results indicate that coronavirus 2'-O-MTase activity can be targeted in vitro and in vivo.

DOI: 10.1128/JVI.00948-15
PubMed: 26041293

Links to Exploration step

pubmed:26041293

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis.</title>
<author>
<name sortKey="Wang, Yi" sort="Wang, Yi" uniqKey="Wang Y" first="Yi" last="Wang">Yi Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Ying" sort="Sun, Ying" uniqKey="Sun Y" first="Ying" last="Sun">Ying Sun</name>
<affiliation>
<nlm:affiliation>Department of Pathogen Biology, Henan University of TCM, Zhengzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Andong" sort="Wu, Andong" uniqKey="Wu A" first="Andong" last="Wu">Andong Wu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Shan" sort="Xu, Shan" uniqKey="Xu S" first="Shan" last="Xu">Shan Xu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Ruangang" sort="Pan, Ruangang" uniqKey="Pan R" first="Ruangang" last="Pan">Ruangang Pan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Cong" sort="Zeng, Cong" uniqKey="Zeng C" first="Cong" last="Zeng">Cong Zeng</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jin, Xu" sort="Jin, Xu" uniqKey="Jin X" first="Xu" last="Jin">Xu Jin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ge, Xingyi" sort="Ge, Xingyi" uniqKey="Ge X" first="Xingyi" last="Ge">Xingyi Ge</name>
<affiliation>
<nlm:affiliation>Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Zhengli" sort="Shi, Zhengli" uniqKey="Shi Z" first="Zhengli" last="Shi">Zhengli Shi</name>
<affiliation>
<nlm:affiliation>Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ahola, Tero" sort="Ahola, Tero" uniqKey="Ahola T" first="Tero" last="Ahola">Tero Ahola</name>
<affiliation>
<nlm:affiliation>Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China chenyu@whu.edu.cn dguo@whu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Deyin" sort="Guo, Deyin" uniqKey="Guo D" first="Deyin" last="Guo">Deyin Guo</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China chenyu@whu.edu.cn dguo@whu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26041293</idno>
<idno type="pmid">26041293</idno>
<idno type="doi">10.1128/JVI.00948-15</idno>
<idno type="wicri:Area/PubMed/Corpus">000E13</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis.</title>
<author>
<name sortKey="Wang, Yi" sort="Wang, Yi" uniqKey="Wang Y" first="Yi" last="Wang">Yi Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Ying" sort="Sun, Ying" uniqKey="Sun Y" first="Ying" last="Sun">Ying Sun</name>
<affiliation>
<nlm:affiliation>Department of Pathogen Biology, Henan University of TCM, Zhengzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wu, Andong" sort="Wu, Andong" uniqKey="Wu A" first="Andong" last="Wu">Andong Wu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xu, Shan" sort="Xu, Shan" uniqKey="Xu S" first="Shan" last="Xu">Shan Xu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pan, Ruangang" sort="Pan, Ruangang" uniqKey="Pan R" first="Ruangang" last="Pan">Ruangang Pan</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Cong" sort="Zeng, Cong" uniqKey="Zeng C" first="Cong" last="Zeng">Cong Zeng</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jin, Xu" sort="Jin, Xu" uniqKey="Jin X" first="Xu" last="Jin">Xu Jin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ge, Xingyi" sort="Ge, Xingyi" uniqKey="Ge X" first="Xingyi" last="Ge">Xingyi Ge</name>
<affiliation>
<nlm:affiliation>Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shi, Zhengli" sort="Shi, Zhengli" uniqKey="Shi Z" first="Zhengli" last="Shi">Zhengli Shi</name>
<affiliation>
<nlm:affiliation>Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ahola, Tero" sort="Ahola, Tero" uniqKey="Ahola T" first="Tero" last="Ahola">Tero Ahola</name>
<affiliation>
<nlm:affiliation>Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yu" sort="Chen, Yu" uniqKey="Chen Y" first="Yu" last="Chen">Yu Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China chenyu@whu.edu.cn dguo@whu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guo, Deyin" sort="Guo, Deyin" uniqKey="Guo D" first="Deyin" last="Guo">Deyin Guo</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China chenyu@whu.edu.cn dguo@whu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alanine Transaminase (metabolism)</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Luciferases</term>
<term>Methyltransferases (metabolism)</term>
<term>Mice</term>
<term>Murine hepatitis virus (genetics)</term>
<term>Murine hepatitis virus (pathogenicity)</term>
<term>Peptides (genetics)</term>
<term>Peptides (pharmacology)</term>
<term>Rats</term>
<term>SARS Virus (enzymology)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alanine Transaminase</term>
<term>Methyltransferases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Murine hepatitis virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Luciferases</term>
<term>Mice</term>
<term>Rats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The 5' cap structures of eukaryotic mRNAs are important for RNA stability and protein translation. Many viruses that replicate in the cytoplasm of eukaryotes have evolved 2'-O-methyltransferases (2'-O-MTase) to autonomously modify their mRNAs and carry a cap-1 structure (m7GpppNm) at the 5' end, thereby facilitating viral replication and escaping innate immune recognition in host cells. Previous studies showed that the 2'-O-MTase activity of severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 16 (nsp16) needs to be activated by nsp10, whereas nsp16 of feline coronavirus (FCoV) alone possesses 2'-O-MTase activity (E. Decroly et al., J Virol 82:8071-8084, 2008, http://dx.doi.org/10.1128/JVI.00407-08; M. Bouvet et al., PLoS Pathog 6:e1000863, 2010, http://dx.doi.org/10.1371/journal.ppat.1000863; E. Decroly et al., PLoS Pathog 7:e1002059, 2011, http://dx.doi.org/10.1371/journal.ppat.1002059; Y. Chen et al., PLoS Pathog 7:e1002294, 2011, http://dx.doi.org/10.1371/journal.ppat.1002294) . In this study, we demonstrate that stimulation of nsp16 2'-O-MTase activity by nsp10 is a universal and conserved mechanism in coronaviruses, including FCoV, and that nsp10 is functionally interchangeable in the stimulation of nsp16 of different coronaviruses. Based on our current and previous studies, we designed a peptide (TP29) from the sequence of the interaction interface of mouse hepatitis virus (MHV) nsp10 and demonstrated that the peptide inhibits the 2'-O-MTase activity of different coronaviruses in biochemical assays and the viral replication in MHV infection and SARS-CoV replicon models. Interestingly, the peptide TP29 exerted robust inhibitory effects in vivo in MHV-infected mice by impairing MHV virulence and pathogenesis through suppressing virus replication and enhancing type I interferon production at an early stage of infection. Therefore, as a proof of principle, the current results indicate that coronavirus 2'-O-MTase activity can be targeted in vitro and in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26041293</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>8416-27</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00948-15</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">The 5' cap structures of eukaryotic mRNAs are important for RNA stability and protein translation. Many viruses that replicate in the cytoplasm of eukaryotes have evolved 2'-O-methyltransferases (2'-O-MTase) to autonomously modify their mRNAs and carry a cap-1 structure (m7GpppNm) at the 5' end, thereby facilitating viral replication and escaping innate immune recognition in host cells. Previous studies showed that the 2'-O-MTase activity of severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 16 (nsp16) needs to be activated by nsp10, whereas nsp16 of feline coronavirus (FCoV) alone possesses 2'-O-MTase activity (E. Decroly et al., J Virol 82:8071-8084, 2008, http://dx.doi.org/10.1128/JVI.00407-08; M. Bouvet et al., PLoS Pathog 6:e1000863, 2010, http://dx.doi.org/10.1371/journal.ppat.1000863; E. Decroly et al., PLoS Pathog 7:e1002059, 2011, http://dx.doi.org/10.1371/journal.ppat.1002059; Y. Chen et al., PLoS Pathog 7:e1002294, 2011, http://dx.doi.org/10.1371/journal.ppat.1002294) . In this study, we demonstrate that stimulation of nsp16 2'-O-MTase activity by nsp10 is a universal and conserved mechanism in coronaviruses, including FCoV, and that nsp10 is functionally interchangeable in the stimulation of nsp16 of different coronaviruses. Based on our current and previous studies, we designed a peptide (TP29) from the sequence of the interaction interface of mouse hepatitis virus (MHV) nsp10 and demonstrated that the peptide inhibits the 2'-O-MTase activity of different coronaviruses in biochemical assays and the viral replication in MHV infection and SARS-CoV replicon models. Interestingly, the peptide TP29 exerted robust inhibitory effects in vivo in MHV-infected mice by impairing MHV virulence and pathogenesis through suppressing virus replication and enhancing type I interferon production at an early stage of infection. Therefore, as a proof of principle, the current results indicate that coronavirus 2'-O-MTase activity can be targeted in vitro and in vivo.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">Coronaviruses are important pathogens of animals and human with high zoonotic potential. SARS-CoV encodes the 2'-O-MTase that is composed of the catalytic subunit nsp16 and the stimulatory subunit nsp10 and plays an important role in virus genome replication and evasion from innate immunity. Our current results demonstrate that stimulation of nsp16 2'-O-MTase activity by nsp10 is a common mechanism for coronaviruses, and nsp10 is functionally interchangeable in the stimulation of nsp16 among different coronaviruses, which underlies the rationale for developing inhibitory peptides. We demonstrate that a peptide derived from the nsp16-interacting domain of MHV nsp10 could inhibit 2'-O-MTase activity of different coronaviruses in vitro and viral replication of MHV and SARS-CoV replicon in cell culture, and it could strongly inhibit virus replication and pathogenesis in MHV-infected mice. This work makes it possible to develop broad-spectrum peptide inhibitors by targeting the nsp16/nsp10 2'-O-MTase of coronaviruses.</AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathogen Biology, Henan University of TCM, Zhengzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Andong</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Shan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Ruangang</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Cong</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Xu</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ge</LastName>
<ForeName>Xingyi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Zhengli</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahola</LastName>
<ForeName>Tero</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China chenyu@whu.edu.cn dguo@whu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Deyin</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China chenyu@whu.edu.cn dguo@whu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C558878">Nsp10 protein, SARS virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.12.-</RegistryNumber>
<NameOfSubstance UI="D008156">Luciferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D008780">Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="C558879">Nsp16 protein, SARS virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.6.1.2</RegistryNumber>
<NameOfSubstance UI="D000410">Alanine Transaminase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000410" MajorTopicYN="N">Alanine Transaminase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008156" MajorTopicYN="N">Luciferases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008780" MajorTopicYN="N">Methyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006517" MajorTopicYN="N">Murine hepatitis virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26041293</ArticleId>
<ArticleId IdType="pii">JVI.00948-15</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00948-15</ArticleId>
<ArticleId IdType="pmc">PMC4524257</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2010 Nov 18;468(7322):452-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21085181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Feb;12(2):137-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2011 Mar;172(1-2):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21192978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Jul;1808(7):1811-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21414289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 May;7(5):e1002059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2012 Aug;167(2):322-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22659295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):7790-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2013 Sep;176(1-2):45-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23702198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Aug;78(15):7863-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 May 19;57(4):537-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2720781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 1991 Jun;33(1-2):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1939506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1995 Jan;35(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7754678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Screen. 2005 Jun;10(4):355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Feb;34(Pt 1):35-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2000;55:135-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11050942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Apr;76(8):3697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3792-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2006;66:193-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8362-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Oct 18;25(20):4933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17024178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Nov 10;314(5801):997-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17038589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Nov 10;314(5801):994-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17038590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Feb 1;109(3):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(13):7189-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17459917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2007 Sep 30;40(5):649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Aug;82(16):8071-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Oct;82(20):9829-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18667505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Jan 15;182(2):1099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19124753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(1):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr;6(4):e1000863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 22;285(43):33230-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699222</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26041293
   |texte=   Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26041293" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021