Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reversible ADP-ribosylation of RNA.

Identifieur interne : 000896 ( PubMed/Corpus ); précédent : 000895; suivant : 000897

Reversible ADP-ribosylation of RNA.

Auteurs : Deeksha Munnur ; Edward Bartlett ; Petra Mikol Evi ; Ilsa T. Kirby ; Johannes Gregor Matthias Rack ; Andreja Miko ; Michael S. Cohen ; Ivan Ahel

Source :

RBID : pubmed:31216043

English descriptors

Abstract

ADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD+) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation. We demonstrate that the human PARPs - PARP10, PARP11 and PARP15 as well as a highly diverged PARP homologue TRPT1, ADP-ribosylate phosphorylated ends of RNA. We further reveal that ADP-ribosylation of RNA mediated by PARP10 and TRPT1 can be efficiently reversed by several cellular ADP-ribosylhydrolases (PARG, TARG1, MACROD1, MACROD2 and ARH3), as well as by MACROD-like hydrolases from VEEV and SARS viruses. Finally, we show that TRPT1 and MACROD homologues in bacteria possess activities equivalent to the human proteins. Our data suggest that RNA ADP-ribosylation may represent a widespread and physiologically relevant form of reversible ADP-ribosylation signalling.

DOI: 10.1093/nar/gkz305
PubMed: 31216043

Links to Exploration step

pubmed:31216043

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reversible ADP-ribosylation of RNA.</title>
<author>
<name sortKey="Munnur, Deeksha" sort="Munnur, Deeksha" uniqKey="Munnur D" first="Deeksha" last="Munnur">Deeksha Munnur</name>
<affiliation>
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bartlett, Edward" sort="Bartlett, Edward" uniqKey="Bartlett E" first="Edward" last="Bartlett">Edward Bartlett</name>
<affiliation>
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mikol Evi, Petra" sort="Mikol Evi, Petra" uniqKey="Mikol Evi P" first="Petra" last="Mikol Evi">Petra Mikol Evi</name>
<affiliation>
<nlm:affiliation>Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kirby, Ilsa T" sort="Kirby, Ilsa T" uniqKey="Kirby I" first="Ilsa T" last="Kirby">Ilsa T. Kirby</name>
<affiliation>
<nlm:affiliation>Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matthias Rack, Johannes Gregor" sort="Matthias Rack, Johannes Gregor" uniqKey="Matthias Rack J" first="Johannes Gregor" last="Matthias Rack">Johannes Gregor Matthias Rack</name>
<affiliation>
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miko, Andreja" sort="Miko, Andreja" uniqKey="Miko A" first="Andreja" last="Miko">Andreja Miko</name>
<affiliation>
<nlm:affiliation>Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Michael S" sort="Cohen, Michael S" uniqKey="Cohen M" first="Michael S" last="Cohen">Michael S. Cohen</name>
<affiliation>
<nlm:affiliation>Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ahel, Ivan" sort="Ahel, Ivan" uniqKey="Ahel I" first="Ivan" last="Ahel">Ivan Ahel</name>
<affiliation>
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31216043</idno>
<idno type="pmid">31216043</idno>
<idno type="doi">10.1093/nar/gkz305</idno>
<idno type="wicri:Area/PubMed/Corpus">000896</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000896</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reversible ADP-ribosylation of RNA.</title>
<author>
<name sortKey="Munnur, Deeksha" sort="Munnur, Deeksha" uniqKey="Munnur D" first="Deeksha" last="Munnur">Deeksha Munnur</name>
<affiliation>
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bartlett, Edward" sort="Bartlett, Edward" uniqKey="Bartlett E" first="Edward" last="Bartlett">Edward Bartlett</name>
<affiliation>
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mikol Evi, Petra" sort="Mikol Evi, Petra" uniqKey="Mikol Evi P" first="Petra" last="Mikol Evi">Petra Mikol Evi</name>
<affiliation>
<nlm:affiliation>Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kirby, Ilsa T" sort="Kirby, Ilsa T" uniqKey="Kirby I" first="Ilsa T" last="Kirby">Ilsa T. Kirby</name>
<affiliation>
<nlm:affiliation>Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matthias Rack, Johannes Gregor" sort="Matthias Rack, Johannes Gregor" uniqKey="Matthias Rack J" first="Johannes Gregor" last="Matthias Rack">Johannes Gregor Matthias Rack</name>
<affiliation>
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miko, Andreja" sort="Miko, Andreja" uniqKey="Miko A" first="Andreja" last="Miko">Andreja Miko</name>
<affiliation>
<nlm:affiliation>Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Michael S" sort="Cohen, Michael S" uniqKey="Cohen M" first="Michael S" last="Cohen">Michael S. Cohen</name>
<affiliation>
<nlm:affiliation>Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ahel, Ivan" sort="Ahel, Ivan" uniqKey="Ahel I" first="Ivan" last="Ahel">Ivan Ahel</name>
<affiliation>
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ADP Ribose Transferases (genetics)</term>
<term>ADP-Ribosylation</term>
<term>Adenosine Diphosphate (chemistry)</term>
<term>Adenosine Diphosphate Ribose</term>
<term>Animals</term>
<term>Catalysis</term>
<term>Chromatin (chemistry)</term>
<term>DNA Repair</term>
<term>DNA Repair Enzymes (metabolism)</term>
<term>DNA, Single-Stranded (metabolism)</term>
<term>Escherichia coli (metabolism)</term>
<term>Humans</term>
<term>Hydrolases (metabolism)</term>
<term>Mice</term>
<term>NAD (metabolism)</term>
<term>Phosphorylation</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (chemistry)</term>
<term>Plasmids (metabolism)</term>
<term>Poly(ADP-ribose) Polymerases (metabolism)</term>
<term>Protein Processing, Post-Translational</term>
<term>Proto-Oncogene Proteins (metabolism)</term>
<term>RNA (metabolism)</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Adenosine Diphosphate</term>
<term>Chromatin</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>ADP Ribose Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Repair Enzymes</term>
<term>DNA, Single-Stranded</term>
<term>Hydrolases</term>
<term>NAD</term>
<term>Poly(ADP-ribose) Polymerases</term>
<term>Proto-Oncogene Proteins</term>
<term>RNA</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>ADP-Ribosylation</term>
<term>Adenosine Diphosphate Ribose</term>
<term>Animals</term>
<term>Catalysis</term>
<term>DNA Repair</term>
<term>Humans</term>
<term>Mice</term>
<term>Phosphorylation</term>
<term>Protein Processing, Post-Translational</term>
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">ADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD+) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation. We demonstrate that the human PARPs - PARP10, PARP11 and PARP15 as well as a highly diverged PARP homologue TRPT1, ADP-ribosylate phosphorylated ends of RNA. We further reveal that ADP-ribosylation of RNA mediated by PARP10 and TRPT1 can be efficiently reversed by several cellular ADP-ribosylhydrolases (PARG, TARG1, MACROD1, MACROD2 and ARH3), as well as by MACROD-like hydrolases from VEEV and SARS viruses. Finally, we show that TRPT1 and MACROD homologues in bacteria possess activities equivalent to the human proteins. Our data suggest that RNA ADP-ribosylation may represent a widespread and physiologically relevant form of reversible ADP-ribosylation signalling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31216043</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>47</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Reversible ADP-ribosylation of RNA.</ArticleTitle>
<Pagination>
<MedlinePgn>5658-5669</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkz305</ELocationID>
<Abstract>
<AbstractText>ADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD+) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation. We demonstrate that the human PARPs - PARP10, PARP11 and PARP15 as well as a highly diverged PARP homologue TRPT1, ADP-ribosylate phosphorylated ends of RNA. We further reveal that ADP-ribosylation of RNA mediated by PARP10 and TRPT1 can be efficiently reversed by several cellular ADP-ribosylhydrolases (PARG, TARG1, MACROD1, MACROD2 and ARH3), as well as by MACROD-like hydrolases from VEEV and SARS viruses. Finally, we show that TRPT1 and MACROD homologues in bacteria possess activities equivalent to the human proteins. Our data suggest that RNA ADP-ribosylation may represent a widespread and physiologically relevant form of reversible ADP-ribosylation signalling.</AbstractText>
<CopyrightInformation>© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Munnur</LastName>
<ForeName>Deeksha</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bartlett</LastName>
<ForeName>Edward</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mikolčević</LastName>
<ForeName>Petra</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kirby</LastName>
<ForeName>Ilsa T</ForeName>
<Initials>IT</Initials>
<AffiliationInfo>
<Affiliation>Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matthias Rack</LastName>
<ForeName>Johannes Gregor</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mikoč</LastName>
<ForeName>Andreja</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Michael S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahel</LastName>
<ForeName>Ivan</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>R01 NS088629</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002843">Chromatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004277">DNA, Single-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C523332">MACROD2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011518">Proto-Oncogene Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>20762-30-5</RegistryNumber>
<NameOfSubstance UI="D000246">Adenosine Diphosphate Ribose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>61D2G4IYVH</RegistryNumber>
<NameOfSubstance UI="D000244">Adenosine Diphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.2.-</RegistryNumber>
<NameOfSubstance UI="D036002">ADP Ribose Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.2.30</RegistryNumber>
<NameOfSubstance UI="C499627">PARP10 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.2.30</RegistryNumber>
<NameOfSubstance UI="D011065">Poly(ADP-ribose) Polymerases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C527101">Trpt1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.-</RegistryNumber>
<NameOfSubstance UI="D006867">Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.5.1.-</RegistryNumber>
<NameOfSubstance UI="D045643">DNA Repair Enzymes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D036002" MajorTopicYN="N">ADP Ribose Transferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000074744" MajorTopicYN="Y">ADP-Ribosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000244" MajorTopicYN="N">Adenosine Diphosphate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000246" MajorTopicYN="N">Adenosine Diphosphate Ribose</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002843" MajorTopicYN="N">Chromatin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="N">DNA Repair</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045643" MajorTopicYN="N">DNA Repair Enzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004277" MajorTopicYN="N">DNA, Single-Stranded</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006867" MajorTopicYN="N">Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011065" MajorTopicYN="N">Poly(ADP-ribose) Polymerases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011518" MajorTopicYN="N">Proto-Oncogene Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31216043</ArticleId>
<ArticleId IdType="pii">5480135</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkz305</ArticleId>
<ArticleId IdType="pmc">PMC6582358</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Feb;88(4):2116-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24335297</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Microbiol. 2018 Jan 23;9:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29410655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Aug;86(15):8147-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22623789</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biosyst. 2012 Jun;8(6):1661-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22399070</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Microbiol. 2018 Jul;26(7):598-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29268982</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2013 May 2;32(9):1225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23481255</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2014 Jul 21;5:4426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25043379</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1997 May 16;272(20):13203-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9148937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2016 Sep 12;90(19):8478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27440879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2006 Oct;273(20):4579-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956368</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2018 Feb 26;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29480802</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>DNA Repair (Amst). 2014 Nov;23:4-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24865146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2015 Jun 1;468(2):293-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25789582</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2013 Apr;20(4):508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23474712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2012 Jun 20;13(7):411-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22713970</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Rep. 2016 Jan 26;14(3):621-631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26774478</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Sep 21;276(38):35891-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454873</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2013;4:1683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23575687</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Cell Biol. 2012 Nov;14(11):1223-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23103912</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2016 Dec 15;64(6):1109-1116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27939941</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2015 Dec 3;60(5):755-768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26626480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2013 Apr;20(4):502-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23474714</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Chem Biol. 2018 Feb 14;14(3):236-243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29443986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11592983</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2017 Dec;284(23):4002-4016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29054115</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Chem Biol. 2016 Dec;12(12):998-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27723750</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Jan 29;274(5):2637-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9915792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1666-1671</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28143925</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2016 Nov 2;44(19):9279-9295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27471034</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2015 Mar 18;137(10):3558-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25706250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2016 Sep;283(18):3371-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27406238</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>RNA. 2008 Feb;14(2):225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur J Med Chem. 2015 May 5;95:546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25847771</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2008 Oct 10;32(1):57-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18851833</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Oncogene. 2005 Mar 17;24(12):1982-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15674325</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Jan 13;281(2):705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16278211</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2018 Mar 8;8(1):4176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29520010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2018 Oct 12;46(18):9617-9624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30202863</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1991 Jun 25;266(18):11986-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2050693</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2018 Feb;53(1):64-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29098880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Exp Cell Res. 2004 Jul 15;297(2):521-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15212953</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Apr 15;286(15):13261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21257746</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>RNA. 2005 Jan;11(1):107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611301</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2017 Feb 02;7:41746</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28150709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 2000 Oct;182(19):5281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10986228</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2009 Jan 9;385(1):212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983849</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>RNA. 2018 Sep;24(9):1144-1157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29884622</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2014 Apr 9;136(14):5201-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24641686</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2017 Mar 2;65(5):932-940.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28190768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2016 Jun 2;85:431-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26844395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Elife. 2017 Jun 26;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28650317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2017 Sep;284(18):2932-2946</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28383827</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2011 Sep 04;477(7366):616-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21892188</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Commun Signal. 2012 Sep 20;10(1):28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22992334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2013 Mar;280(5):1330-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23305266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2018 Mar 16;46(5):2417-2431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29361132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2016 May 5;62(3):432-442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27067600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2014 May 9;289(19):13627-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695737</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 2010 Apr;35(4):208-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20106667</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2016 Dec 13;7(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27965448</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000896 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000896 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31216043
   |texte=   Reversible ADP-ribosylation of RNA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31216043" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021