Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of evolution in the emergence of infectious diseases.

Identifieur interne : 003020 ( PubMed/Checkpoint ); précédent : 003019; suivant : 003021

The role of evolution in the emergence of infectious diseases.

Auteurs : Rustom Antia [États-Unis] ; Roland R. Regoes ; Jacob C. Koella ; Carl T. Bergstrom

Source :

RBID : pubmed:14668863

Descripteurs français

English descriptors

Abstract

It is unclear when, where and how novel pathogens such as human immunodeficiency virus (HIV), monkeypox and severe acute respiratory syndrome (SARS) will cross the barriers that separate their natural reservoirs from human populations and ignite the epidemic spread of novel infectious diseases. New pathogens are believed to emerge from animal reservoirs when ecological changes increase the pathogen's opportunities to enter the human population and to generate subsequent human-to-human transmission. Effective human-to-human transmission requires that the pathogen's basic reproductive number, R(0), should exceed one, where R(0) is the average number of secondary infections arising from one infected individual in a completely susceptible population. However, an increase in R(0), even when insufficient to generate an epidemic, nonetheless increases the number of subsequently infected individuals. Here we show that, as a consequence of this, the probability of pathogen evolution to R(0) > 1 and subsequent disease emergence can increase markedly.

DOI: 10.1038/nature02104
PubMed: 14668863


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:14668863

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of evolution in the emergence of infectious diseases.</title>
<author>
<name sortKey="Antia, Rustom" sort="Antia, Rustom" uniqKey="Antia R" first="Rustom" last="Antia">Rustom Antia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Emory University, Atlanta, Georgia 30322, USA. rantia@emory.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Emory University, Atlanta, Georgia 30322</wicri:regionArea>
<wicri:noRegion>Georgia 30322</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Regoes, Roland R" sort="Regoes, Roland R" uniqKey="Regoes R" first="Roland R" last="Regoes">Roland R. Regoes</name>
</author>
<author>
<name sortKey="Koella, Jacob C" sort="Koella, Jacob C" uniqKey="Koella J" first="Jacob C" last="Koella">Jacob C. Koella</name>
</author>
<author>
<name sortKey="Bergstrom, Carl T" sort="Bergstrom, Carl T" uniqKey="Bergstrom C" first="Carl T" last="Bergstrom">Carl T. Bergstrom</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14668863</idno>
<idno type="pmid">14668863</idno>
<idno type="doi">10.1038/nature02104</idno>
<idno type="wicri:Area/PubMed/Corpus">003050</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003050</idno>
<idno type="wicri:Area/PubMed/Curation">003050</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003050</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003020</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003020</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of evolution in the emergence of infectious diseases.</title>
<author>
<name sortKey="Antia, Rustom" sort="Antia, Rustom" uniqKey="Antia R" first="Rustom" last="Antia">Rustom Antia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Emory University, Atlanta, Georgia 30322, USA. rantia@emory.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Emory University, Atlanta, Georgia 30322</wicri:regionArea>
<wicri:noRegion>Georgia 30322</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Regoes, Roland R" sort="Regoes, Roland R" uniqKey="Regoes R" first="Roland R" last="Regoes">Roland R. Regoes</name>
</author>
<author>
<name sortKey="Koella, Jacob C" sort="Koella, Jacob C" uniqKey="Koella J" first="Jacob C" last="Koella">Jacob C. Koella</name>
</author>
<author>
<name sortKey="Bergstrom, Carl T" sort="Bergstrom, Carl T" uniqKey="Bergstrom C" first="Carl T" last="Bergstrom">Carl T. Bergstrom</name>
</author>
</analytic>
<series>
<title level="j">Nature</title>
<idno type="eISSN">1476-4687</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Communicable Diseases (epidemiology)</term>
<term>Communicable Diseases (genetics)</term>
<term>Communicable Diseases (transmission)</term>
<term>Ecosystem</term>
<term>Host-Parasite Interactions</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Mutation (genetics)</term>
<term>Probability</term>
<term>Stochastic Processes</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Interactions hôte-parasite</term>
<term>Maladies transmissibles (génétique)</term>
<term>Maladies transmissibles (transmission)</term>
<term>Maladies transmissibles (épidémiologie)</term>
<term>Modèles biologiques</term>
<term>Mutation (génétique)</term>
<term>Probabilité</term>
<term>Processus stochastiques</term>
<term>Écosystème</term>
<term>Évolution biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Communicable Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Communicable Diseases</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Maladies transmissibles</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Communicable Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Maladies transmissibles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Ecosystem</term>
<term>Host-Parasite Interactions</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Probability</term>
<term>Stochastic Processes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Interactions hôte-parasite</term>
<term>Modèles biologiques</term>
<term>Probabilité</term>
<term>Processus stochastiques</term>
<term>Écosystème</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is unclear when, where and how novel pathogens such as human immunodeficiency virus (HIV), monkeypox and severe acute respiratory syndrome (SARS) will cross the barriers that separate their natural reservoirs from human populations and ignite the epidemic spread of novel infectious diseases. New pathogens are believed to emerge from animal reservoirs when ecological changes increase the pathogen's opportunities to enter the human population and to generate subsequent human-to-human transmission. Effective human-to-human transmission requires that the pathogen's basic reproductive number, R(0), should exceed one, where R(0) is the average number of secondary infections arising from one infected individual in a completely susceptible population. However, an increase in R(0), even when insufficient to generate an epidemic, nonetheless increases the number of subsequently infected individuals. Here we show that, as a consequence of this, the probability of pathogen evolution to R(0) > 1 and subsequent disease emergence can increase markedly.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14668863</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>01</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1476-4687</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>426</Volume>
<Issue>6967</Issue>
<PubDate>
<Year>2003</Year>
<Month>Dec</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Nature</Title>
<ISOAbbreviation>Nature</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of evolution in the emergence of infectious diseases.</ArticleTitle>
<Pagination>
<MedlinePgn>658-61</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>It is unclear when, where and how novel pathogens such as human immunodeficiency virus (HIV), monkeypox and severe acute respiratory syndrome (SARS) will cross the barriers that separate their natural reservoirs from human populations and ignite the epidemic spread of novel infectious diseases. New pathogens are believed to emerge from animal reservoirs when ecological changes increase the pathogen's opportunities to enter the human population and to generate subsequent human-to-human transmission. Effective human-to-human transmission requires that the pathogen's basic reproductive number, R(0), should exceed one, where R(0) is the average number of secondary infections arising from one infected individual in a completely susceptible population. However, an increase in R(0), even when insufficient to generate an epidemic, nonetheless increases the number of subsequently infected individuals. Here we show that, as a consequence of this, the probability of pathogen evolution to R(0) > 1 and subsequent disease emergence can increase markedly.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Antia</LastName>
<ForeName>Rustom</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Emory University, Atlanta, Georgia 30322, USA. rantia@emory.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Regoes</LastName>
<ForeName>Roland R</ForeName>
<Initials>RR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koella</LastName>
<ForeName>Jacob C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bergstrom</LastName>
<ForeName>Carl T</ForeName>
<Initials>CT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nature</MedlineTA>
<NlmUniqueID>0410462</NlmUniqueID>
<ISSNLinking>0028-0836</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nature. 2003 Dec 11;426(6967):609-10</RefSource>
<PMID Version="1">14668840</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003141" MajorTopicYN="N">Communicable Diseases</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011336" MajorTopicYN="N">Probability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013269" MajorTopicYN="N">Stochastic Processes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2003</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2003</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14668863</ArticleId>
<ArticleId IdType="doi">10.1038/nature02104</ArticleId>
<ArticleId IdType="pii">nature02104</ArticleId>
<ArticleId IdType="pmc">PMC7095141</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1966-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766207</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Jul 28;289(5479):518-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10939954</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2003 Feb;163(2):467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12618386</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 1998 Aug 20;339(8):556-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9709051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Epidemiol. 1988 Sep;17(3):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2850277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Math Biosci. 1996 Oct 1;137(1):25-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8854661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 May 26;288(5470):1432-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12775803</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 May 29;423(6939):467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12774078</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Br Med Bull. 1998;54(3):693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10326294</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2001 Jul 29;356(1411):1001-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11516378</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1961-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766206</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Theor Biol. 1996 Mar 7;179(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8733427</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 Apr 16;284(5413):407, 409-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10232977</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Jan 28;287(5453):607-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10649986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Ecol Evol. 1995 Aug;10(8):319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237055</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2001 May-Jun;7(3):434-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11384521</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Parasitology. 1990;100 Suppl:S89-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2122393</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2002 May;8(5):451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11996677</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bull Math Biol. 1985;47(2):239-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4027436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2001 May;76(2):239-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11396848</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2001 Jun 29;356(1410):901-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11405937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bergstrom, Carl T" sort="Bergstrom, Carl T" uniqKey="Bergstrom C" first="Carl T" last="Bergstrom">Carl T. Bergstrom</name>
<name sortKey="Koella, Jacob C" sort="Koella, Jacob C" uniqKey="Koella J" first="Jacob C" last="Koella">Jacob C. Koella</name>
<name sortKey="Regoes, Roland R" sort="Regoes, Roland R" uniqKey="Regoes R" first="Roland R" last="Regoes">Roland R. Regoes</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Antia, Rustom" sort="Antia, Rustom" uniqKey="Antia R" first="Rustom" last="Antia">Rustom Antia</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 003020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:14668863
   |texte=   The role of evolution in the emergence of infectious diseases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:14668863" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021