Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A model of the ACE2 structure and function as a SARS-CoV receptor.

Identifieur interne : 002E62 ( PubMed/Checkpoint ); précédent : 002E61; suivant : 002E63

A model of the ACE2 structure and function as a SARS-CoV receptor.

Auteurs : Ponraj Prabakaran [États-Unis] ; Xiaodong Xiao ; Dimiter S. Dimitrov

Source :

RBID : pubmed:14715271

Descripteurs français

English descriptors

Abstract

The angiotensin-converting enzyme 2 (ACE2) is an important regulator of the renin-angiotensin system and was very recently identified as a functional receptor for the SARS virus. The ACE2 sequence is similar (sequence identities 43% and 35%, and similarities 61% and 55%, respectively) to those of the testis-specific form of ACE (tACE) and the Drosophila homolog of ACE (AnCE). The high level of sequence similarity allowed us to build a robust homology model of the ACE2 structure with a root-mean-square deviation from the aligned crystal structures of tACE and AnCE less than 0.5A. A prominent feature of the model is a deep channel on the top of the molecule that contains the catalytic site. Negatively charged ridges surrounding the channel may provide a possible binding site for the positively charged receptor-binding domain (RBD) of the S-glycoprotein, which we recently identified [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Several distinct patches of hydrophobic residues at the ACE2 surface were noted at close proximity to the charged ridges that could contribute to binding. These results suggest a possible binding region for the SARS-CoV S-glycoprotein on ACE2 and could help in the design of experiments to further elucidate the structure and function of ACE2.

DOI: 10.1016/j.bbrc.2003.12.081
PubMed: 14715271


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:14715271

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A model of the ACE2 structure and function as a SARS-CoV receptor.</title>
<author>
<name sortKey="Prabakaran, Ponraj" sort="Prabakaran, Ponraj" uniqKey="Prabakaran P" first="Ponraj" last="Prabakaran">Ponraj Prabakaran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Experimental and Computational Biology, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Experimental and Computational Biology, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Xiaodong" sort="Xiao, Xiaodong" uniqKey="Xiao X" first="Xiaodong" last="Xiao">Xiaodong Xiao</name>
</author>
<author>
<name sortKey="Dimitrov, Dimiter S" sort="Dimitrov, Dimiter S" uniqKey="Dimitrov D" first="Dimiter S" last="Dimitrov">Dimiter S. Dimitrov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:14715271</idno>
<idno type="pmid">14715271</idno>
<idno type="doi">10.1016/j.bbrc.2003.12.081</idno>
<idno type="wicri:Area/PubMed/Corpus">003006</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003006</idno>
<idno type="wicri:Area/PubMed/Curation">003006</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003006</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002E62</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002E62</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A model of the ACE2 structure and function as a SARS-CoV receptor.</title>
<author>
<name sortKey="Prabakaran, Ponraj" sort="Prabakaran, Ponraj" uniqKey="Prabakaran P" first="Ponraj" last="Prabakaran">Ponraj Prabakaran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Experimental and Computational Biology, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Experimental and Computational Biology, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Xiaodong" sort="Xiao, Xiaodong" uniqKey="Xiao X" first="Xiaodong" last="Xiao">Xiaodong Xiao</name>
</author>
<author>
<name sortKey="Dimitrov, Dimiter S" sort="Dimitrov, Dimiter S" uniqKey="Dimitrov D" first="Dimiter S" last="Dimitrov">Dimiter S. Dimitrov</name>
</author>
</analytic>
<series>
<title level="j">Biochemical and biophysical research communications</title>
<idno type="ISSN">0006-291X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Carboxypeptidases (chemistry)</term>
<term>Computer Simulation</term>
<term>Enzyme Stability</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Receptors, Virus (chemistry)</term>
<term>SARS Virus (chemistry)</term>
<term>Sequence Alignment (methods)</term>
<term>Sequence Analysis, Protein (methods)</term>
<term>Structure-Activity Relationship</term>
<term>Surface Properties</term>
<term>Viral Fusion Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences ()</term>
<term>Analyse de séquence de protéine ()</term>
<term>Carboxypeptidases ()</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Modèles chimiques</term>
<term>Modèles moléculaires</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Propriétés de surface</term>
<term>Protéines de fusion virale ()</term>
<term>Relation structure-activité</term>
<term>Récepteurs viraux ()</term>
<term>Simulation numérique</term>
<term>Sites de fixation</term>
<term>Stabilité enzymatique</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carboxypeptidases</term>
<term>Receptors, Virus</term>
<term>Viral Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Alignment</term>
<term>Sequence Analysis, Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Enzyme Stability</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Structure-Activity Relationship</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence de protéine</term>
<term>Carboxypeptidases</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Modèles chimiques</term>
<term>Modèles moléculaires</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Propriétés de surface</term>
<term>Protéines de fusion virale</term>
<term>Relation structure-activité</term>
<term>Récepteurs viraux</term>
<term>Simulation numérique</term>
<term>Sites de fixation</term>
<term>Stabilité enzymatique</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The angiotensin-converting enzyme 2 (ACE2) is an important regulator of the renin-angiotensin system and was very recently identified as a functional receptor for the SARS virus. The ACE2 sequence is similar (sequence identities 43% and 35%, and similarities 61% and 55%, respectively) to those of the testis-specific form of ACE (tACE) and the Drosophila homolog of ACE (AnCE). The high level of sequence similarity allowed us to build a robust homology model of the ACE2 structure with a root-mean-square deviation from the aligned crystal structures of tACE and AnCE less than 0.5A. A prominent feature of the model is a deep channel on the top of the molecule that contains the catalytic site. Negatively charged ridges surrounding the channel may provide a possible binding site for the positively charged receptor-binding domain (RBD) of the S-glycoprotein, which we recently identified [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Several distinct patches of hydrophobic residues at the ACE2 surface were noted at close proximity to the charged ridges that could contribute to binding. These results suggest a possible binding region for the SARS-CoV S-glycoprotein on ACE2 and could help in the design of experiments to further elucidate the structure and function of ACE2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14715271</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>04</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-291X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>314</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2004</Year>
<Month>Jan</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Biochemical and biophysical research communications</Title>
<ISOAbbreviation>Biochem. Biophys. Res. Commun.</ISOAbbreviation>
</Journal>
<ArticleTitle>A model of the ACE2 structure and function as a SARS-CoV receptor.</ArticleTitle>
<Pagination>
<MedlinePgn>235-41</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The angiotensin-converting enzyme 2 (ACE2) is an important regulator of the renin-angiotensin system and was very recently identified as a functional receptor for the SARS virus. The ACE2 sequence is similar (sequence identities 43% and 35%, and similarities 61% and 55%, respectively) to those of the testis-specific form of ACE (tACE) and the Drosophila homolog of ACE (AnCE). The high level of sequence similarity allowed us to build a robust homology model of the ACE2 structure with a root-mean-square deviation from the aligned crystal structures of tACE and AnCE less than 0.5A. A prominent feature of the model is a deep channel on the top of the molecule that contains the catalytic site. Negatively charged ridges surrounding the channel may provide a possible binding site for the positively charged receptor-binding domain (RBD) of the S-glycoprotein, which we recently identified [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Several distinct patches of hydrophobic residues at the ACE2 surface were noted at close proximity to the charged ridges that could contribute to binding. These results suggest a possible binding region for the SARS-CoV S-glycoprotein on ACE2 and could help in the design of experiments to further elucidate the structure and function of ACE2.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prabakaran</LastName>
<ForeName>Ponraj</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Experimental and Computational Biology, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Xiaodong</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dimitrov</LastName>
<ForeName>Dimiter S</ForeName>
<Initials>DS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochem Biophys Res Commun</MedlineTA>
<NlmUniqueID>0372516</NlmUniqueID>
<ISSNLinking>0006-291X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014760">Viral Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D002268">Carboxypeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002268" MajorTopicYN="N">Carboxypeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020539" MajorTopicYN="N">Sequence Analysis, Protein</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014760" MajorTopicYN="N">Viral Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14715271</ArticleId>
<ArticleId IdType="pii">S0006291X03026792</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbrc.2003.12.081</ArticleId>
<ArticleId IdType="pmc">PMC7117316</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1971 Feb 14;55(3):379-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5551392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Brief Bioinform. 2002 Sep;3(3):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12230035</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1982 May 5;157(1):105-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7108955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Jun 20;417(6891):822-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12075344</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Oct 10;310(1):78-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14511651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Feb;2(2):109-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043007</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1998 Jun;7(6):1431-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9655348</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 1991;11(4):281-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1758883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 1987 Oct-Nov;1(5):385-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3508287</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2000 Jun 23;101(7):697-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10892741</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Circ Res. 2000 Sep 1;87(5):E1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10969042</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Oct 27;275(43):33238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2003 Nov 18;42(45):13185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 1987 Oct-Nov;1(5):377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3508286</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2003 Mar 13;538(1-3):65-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12633854</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Jan 30;421(6922):551-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12540854</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Dimitrov, Dimiter S" sort="Dimitrov, Dimiter S" uniqKey="Dimitrov D" first="Dimiter S" last="Dimitrov">Dimiter S. Dimitrov</name>
<name sortKey="Xiao, Xiaodong" sort="Xiao, Xiaodong" uniqKey="Xiao X" first="Xiaodong" last="Xiao">Xiaodong Xiao</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Prabakaran, Ponraj" sort="Prabakaran, Ponraj" uniqKey="Prabakaran P" first="Ponraj" last="Prabakaran">Ponraj Prabakaran</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E62 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002E62 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:14715271
   |texte=   A model of the ACE2 structure and function as a SARS-CoV receptor.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:14715271" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021