Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Systematic analysis of bicistronic reporter assay data.

Identifieur interne : 002A00 ( PubMed/Checkpoint ); précédent : 002999; suivant : 002A01

Systematic analysis of bicistronic reporter assay data.

Auteurs : Jonathan L. Jacobs [États-Unis] ; Jonathan D. Dinman

Source :

RBID : pubmed:15561995

Descripteurs français

English descriptors

Abstract

Bicistronic reporter assay systems have become a mainstay of molecular biology. While the assays themselves encompass a broad range of diverse and unrelated experimental protocols, the numerical data garnered from these experiments often have similar statistical properties. In general, a primary dataset measures the paired expression of two internally controlled reporter genes. The expression ratio of these two genes is then normalized to an external control reporter. The end result is a 'ratio of ratios' that is inherently sensitive to propagation of the error contributed by each of the respective numerical components. The statistical analysis of this data therefore requires careful handling in order to control for the propagation of error and its potentially misleading effects. A careful survey of the literature found no consistent method for the statistical analysis of data generated from these important and informative assay systems. In this report, we present a detailed statistical framework for the systematic analysis of data obtained from bicistronic reporter assay systems. Specifically, a dual luciferase reporter assay was employed to measure the efficiency of four programmed -1 frameshift signals. These frameshift signals originate from the L-A virus, the SARS-associated Coronavirus and computationally identified frameshift signals from two Saccharomyces cerevisiae genes. Furthermore, these statistical methods were applied to prove that the effects of anisomycin on programmed -1 frameshifting are statistically significant. A set of Microsoft Excel spreadsheets, which can be used as templates for data generated by dual reporter assay systems, and an online tutorial are available at our website (http://dinmanlab.umd.edu/statistics). These spreadsheets could be easily adapted to any bicistronic reporter assay system.

DOI: 10.1093/nar/gnh157
PubMed: 15561995


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15561995

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Systematic analysis of bicistronic reporter assay data.</title>
<author>
<name sortKey="Jacobs, Jonathan L" sort="Jacobs, Jonathan L" uniqKey="Jacobs J" first="Jonathan L" last="Jacobs">Jonathan L. Jacobs</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dinman, Jonathan D" sort="Dinman, Jonathan D" uniqKey="Dinman J" first="Jonathan D" last="Dinman">Jonathan D. Dinman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15561995</idno>
<idno type="pmid">15561995</idno>
<idno type="doi">10.1093/nar/gnh157</idno>
<idno type="wicri:Area/PubMed/Corpus">002A35</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A35</idno>
<idno type="wicri:Area/PubMed/Curation">002A35</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002A35</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002A00</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002A00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Systematic analysis of bicistronic reporter assay data.</title>
<author>
<name sortKey="Jacobs, Jonathan L" sort="Jacobs, Jonathan L" uniqKey="Jacobs J" first="Jonathan L" last="Jacobs">Jonathan L. Jacobs</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
<settlement type="city">College Park (Maryland)</settlement>
</placeName>
<orgName type="university">Université du Maryland</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dinman, Jonathan D" sort="Dinman, Jonathan D" uniqKey="Dinman J" first="Jonathan D" last="Dinman">Jonathan D. Dinman</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Data Interpretation, Statistical</term>
<term>Frameshifting, Ribosomal</term>
<term>Gene Expression</term>
<term>Genes, Reporter</term>
<term>Genetic Techniques</term>
<term>Internet</term>
<term>Luciferases (genetics)</term>
<term>Probability</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Sample Size</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Décalage ribosomique du cadre de lecture</term>
<term>Expression des gènes</term>
<term>Gènes rapporteurs</term>
<term>Internet</term>
<term>Interprétation statistique de données</term>
<term>Luciferases (génétique)</term>
<term>Probabilité</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Taille d'échantillon</term>
<term>Techniques génétiques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Luciferases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Luciferases</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Data Interpretation, Statistical</term>
<term>Frameshifting, Ribosomal</term>
<term>Gene Expression</term>
<term>Genes, Reporter</term>
<term>Genetic Techniques</term>
<term>Internet</term>
<term>Probability</term>
<term>Sample Size</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Décalage ribosomique du cadre de lecture</term>
<term>Expression des gènes</term>
<term>Gènes rapporteurs</term>
<term>Internet</term>
<term>Interprétation statistique de données</term>
<term>Probabilité</term>
<term>Taille d'échantillon</term>
<term>Techniques génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bicistronic reporter assay systems have become a mainstay of molecular biology. While the assays themselves encompass a broad range of diverse and unrelated experimental protocols, the numerical data garnered from these experiments often have similar statistical properties. In general, a primary dataset measures the paired expression of two internally controlled reporter genes. The expression ratio of these two genes is then normalized to an external control reporter. The end result is a 'ratio of ratios' that is inherently sensitive to propagation of the error contributed by each of the respective numerical components. The statistical analysis of this data therefore requires careful handling in order to control for the propagation of error and its potentially misleading effects. A careful survey of the literature found no consistent method for the statistical analysis of data generated from these important and informative assay systems. In this report, we present a detailed statistical framework for the systematic analysis of data obtained from bicistronic reporter assay systems. Specifically, a dual luciferase reporter assay was employed to measure the efficiency of four programmed -1 frameshift signals. These frameshift signals originate from the L-A virus, the SARS-associated Coronavirus and computationally identified frameshift signals from two Saccharomyces cerevisiae genes. Furthermore, these statistical methods were applied to prove that the effects of anisomycin on programmed -1 frameshifting are statistically significant. A set of Microsoft Excel spreadsheets, which can be used as templates for data generated by dual reporter assay systems, and an online tutorial are available at our website (http://dinmanlab.umd.edu/statistics). These spreadsheets could be easily adapted to any bicistronic reporter assay system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15561995</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>12</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2004</Year>
<Month>Nov</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Systematic analysis of bicistronic reporter assay data.</ArticleTitle>
<Pagination>
<MedlinePgn>e160</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Bicistronic reporter assay systems have become a mainstay of molecular biology. While the assays themselves encompass a broad range of diverse and unrelated experimental protocols, the numerical data garnered from these experiments often have similar statistical properties. In general, a primary dataset measures the paired expression of two internally controlled reporter genes. The expression ratio of these two genes is then normalized to an external control reporter. The end result is a 'ratio of ratios' that is inherently sensitive to propagation of the error contributed by each of the respective numerical components. The statistical analysis of this data therefore requires careful handling in order to control for the propagation of error and its potentially misleading effects. A careful survey of the literature found no consistent method for the statistical analysis of data generated from these important and informative assay systems. In this report, we present a detailed statistical framework for the systematic analysis of data obtained from bicistronic reporter assay systems. Specifically, a dual luciferase reporter assay was employed to measure the efficiency of four programmed -1 frameshift signals. These frameshift signals originate from the L-A virus, the SARS-associated Coronavirus and computationally identified frameshift signals from two Saccharomyces cerevisiae genes. Furthermore, these statistical methods were applied to prove that the effects of anisomycin on programmed -1 frameshifting are statistically significant. A set of Microsoft Excel spreadsheets, which can be used as templates for data generated by dual reporter assay systems, and an online tutorial are available at our website (http://dinmanlab.umd.edu/statistics). These spreadsheets could be easily adapted to any bicistronic reporter assay system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jacobs</LastName>
<ForeName>Jonathan L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dinman</LastName>
<ForeName>Jonathan D</ForeName>
<Initials>JD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F37 LM008333</GrantID>
<Acronym>LM</Acronym>
<Agency>NLM NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 GM068123</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>11</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 1.13.12.-</RegistryNumber>
<NameOfSubstance UI="D008156">Luciferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003627" MajorTopicYN="N">Data Interpretation, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018965" MajorTopicYN="N">Frameshifting, Ribosomal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="Y">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="Y">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005821" MajorTopicYN="N">Genetic Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020407" MajorTopicYN="N">Internet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008156" MajorTopicYN="N">Luciferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011336" MajorTopicYN="N">Probability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018401" MajorTopicYN="N">Sample Size</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15561995</ArticleId>
<ArticleId IdType="pii">32/20/e160</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gnh157</ArticleId>
<ArticleId IdType="pmc">PMC534638</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2001 Apr;21(8):2826-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jan;19(1):384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9858562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Sep;27(9):448-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12217519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Feb;9(2):168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Mar;270(6):1308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Jun;84(Pt 6):1549-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12771425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Jul 25;330(5):1061-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12860128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Aug;9(8):982-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Aug;9(8):1019-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2003 Aug;94(2):85-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12902037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Dec;77(24):13093-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(3):902-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14769948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Apr;10(4):691-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Aug;10(8):1225-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1967 Jul 10;242(13):3226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6027796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1973 Jun 23;312(2):368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4579233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):163-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Nov 30;96(1):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2265755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Jan;136(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8138178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Apr 1;24(7):1195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8614619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Sep 20;86(6):949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8808630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6606-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9192612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1998 Apr;4(4):479-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2002 Aug 15;300(1):60-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202206</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
<settlement>
<li>College Park (Maryland)</li>
</settlement>
<orgName>
<li>Université du Maryland</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Dinman, Jonathan D" sort="Dinman, Jonathan D" uniqKey="Dinman J" first="Jonathan D" last="Dinman">Jonathan D. Dinman</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Jacobs, Jonathan L" sort="Jacobs, Jonathan L" uniqKey="Jacobs J" first="Jonathan L" last="Jacobs">Jonathan L. Jacobs</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A00 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002A00 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:15561995
   |texte=   Systematic analysis of bicistronic reporter assay data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:15561995" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021