Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features.

Identifieur interne : 002276 ( PubMed/Checkpoint ); précédent : 002275; suivant : 002277

Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features.

Auteurs : Lili Chen [République populaire de Chine] ; Jian Li ; Cheng Luo ; Hong Liu ; Weijun Xu ; Gang Chen ; Oi Wah Liew ; Weiliang Zhu ; Chum Mok Puah ; Xu Shen ; Hualiang Jiang

Source :

RBID : pubmed:17046271

Descripteurs français

English descriptors

Abstract

The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is one of the most promising targets for discovery of drugs against SARS, because of its critical role in the viral life cycle. In this study, a natural compound called quercetin-3-beta-galactoside was identified as an inhibitor of the protease by molecular docking, SPR/FRET-based bioassays, and mutagenesis studies. Both molecular modeling and Q189A mutation revealed that Gln189 plays a key role in the binding. Furthermore, experimental evidence showed that the secondary structure and enzymatic activity of SARS-CoV 3CL(pro) were not affected by the Q189A mutation. With the help of molecular modeling, eight new derivatives of the natural product were designed and synthesized. Bioassay results reveal salient features of the structure-activity relationship of the new compounds: (1) removal of the 7-hydroxy group of the quercetin moiety decreases the bioactivity of the derivatives; (2) acetoxylation of the sugar moiety abolishes inhibitor action; (3) introduction of a large sugar substituent on 7-hydroxy of quercetin can be tolerated; (4) replacement of the galactose moiety with other sugars does not affect inhibitor potency. This study not only reveals a new class of compounds as potential drug leads against the SARS virus, but also provides a solid understanding of the mechanism of inhibition against the target enzyme.

DOI: 10.1016/j.bmc.2006.09.014
PubMed: 17046271


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17046271

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features.</title>
<author>
<name sortKey="Chen, Lili" sort="Chen, Lili" uniqKey="Chen L" first="Lili" last="Chen">Lili Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203</wicri:regionArea>
<wicri:noRegion>Shanghai 201203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jian" sort="Li, Jian" uniqKey="Li J" first="Jian" last="Li">Jian Li</name>
</author>
<author>
<name sortKey="Luo, Cheng" sort="Luo, Cheng" uniqKey="Luo C" first="Cheng" last="Luo">Cheng Luo</name>
</author>
<author>
<name sortKey="Liu, Hong" sort="Liu, Hong" uniqKey="Liu H" first="Hong" last="Liu">Hong Liu</name>
</author>
<author>
<name sortKey="Xu, Weijun" sort="Xu, Weijun" uniqKey="Xu W" first="Weijun" last="Xu">Weijun Xu</name>
</author>
<author>
<name sortKey="Chen, Gang" sort="Chen, Gang" uniqKey="Chen G" first="Gang" last="Chen">Gang Chen</name>
</author>
<author>
<name sortKey="Liew, Oi Wah" sort="Liew, Oi Wah" uniqKey="Liew O" first="Oi Wah" last="Liew">Oi Wah Liew</name>
</author>
<author>
<name sortKey="Zhu, Weiliang" sort="Zhu, Weiliang" uniqKey="Zhu W" first="Weiliang" last="Zhu">Weiliang Zhu</name>
</author>
<author>
<name sortKey="Puah, Chum Mok" sort="Puah, Chum Mok" uniqKey="Puah C" first="Chum Mok" last="Puah">Chum Mok Puah</name>
</author>
<author>
<name sortKey="Shen, Xu" sort="Shen, Xu" uniqKey="Shen X" first="Xu" last="Shen">Xu Shen</name>
</author>
<author>
<name sortKey="Jiang, Hualiang" sort="Jiang, Hualiang" uniqKey="Jiang H" first="Hualiang" last="Jiang">Hualiang Jiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:17046271</idno>
<idno type="pmid">17046271</idno>
<idno type="doi">10.1016/j.bmc.2006.09.014</idno>
<idno type="wicri:Area/PubMed/Corpus">002015</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002015</idno>
<idno type="wicri:Area/PubMed/Curation">002015</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002015</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002276</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002276</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features.</title>
<author>
<name sortKey="Chen, Lili" sort="Chen, Lili" uniqKey="Chen L" first="Lili" last="Chen">Lili Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203</wicri:regionArea>
<wicri:noRegion>Shanghai 201203</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jian" sort="Li, Jian" uniqKey="Li J" first="Jian" last="Li">Jian Li</name>
</author>
<author>
<name sortKey="Luo, Cheng" sort="Luo, Cheng" uniqKey="Luo C" first="Cheng" last="Luo">Cheng Luo</name>
</author>
<author>
<name sortKey="Liu, Hong" sort="Liu, Hong" uniqKey="Liu H" first="Hong" last="Liu">Hong Liu</name>
</author>
<author>
<name sortKey="Xu, Weijun" sort="Xu, Weijun" uniqKey="Xu W" first="Weijun" last="Xu">Weijun Xu</name>
</author>
<author>
<name sortKey="Chen, Gang" sort="Chen, Gang" uniqKey="Chen G" first="Gang" last="Chen">Gang Chen</name>
</author>
<author>
<name sortKey="Liew, Oi Wah" sort="Liew, Oi Wah" uniqKey="Liew O" first="Oi Wah" last="Liew">Oi Wah Liew</name>
</author>
<author>
<name sortKey="Zhu, Weiliang" sort="Zhu, Weiliang" uniqKey="Zhu W" first="Weiliang" last="Zhu">Weiliang Zhu</name>
</author>
<author>
<name sortKey="Puah, Chum Mok" sort="Puah, Chum Mok" uniqKey="Puah C" first="Chum Mok" last="Puah">Chum Mok Puah</name>
</author>
<author>
<name sortKey="Shen, Xu" sort="Shen, Xu" uniqKey="Shen X" first="Xu" last="Shen">Xu Shen</name>
</author>
<author>
<name sortKey="Jiang, Hualiang" sort="Jiang, Hualiang" uniqKey="Jiang H" first="Hualiang" last="Jiang">Hualiang Jiang</name>
</author>
</analytic>
<series>
<title level="j">Bioorganic & medicinal chemistry</title>
<idno type="ISSN">0968-0896</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (genetics)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Drug Design</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Structure</term>
<term>Protease Inhibitors (pharmacology)</term>
<term>Quercetin (analogs & derivatives)</term>
<term>Quercetin (chemical synthesis)</term>
<term>Quercetin (chemistry)</term>
<term>Quercetin (pharmacology)</term>
<term>SARS Virus (enzymology)</term>
<term>Structure-Activity Relationship</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conception de médicament</term>
<term>Cysteine endopeptidases ()</term>
<term>Cysteine endopeptidases (génétique)</term>
<term>Cysteine endopeptidases (métabolisme)</term>
<term>Humains</term>
<term>Inhibiteurs de protéases (pharmacologie)</term>
<term>Modèles moléculaires</term>
<term>Protéines virales ()</term>
<term>Protéines virales (génétique)</term>
<term>Protéines virales (métabolisme)</term>
<term>Quercétine ()</term>
<term>Quercétine (analogues et dérivés)</term>
<term>Quercétine (pharmacologie)</term>
<term>Quercétine (synthèse chimique)</term>
<term>Relation structure-activité</term>
<term>Sites de fixation</term>
<term>Structure moléculaire</term>
<term>Virus du SRAS (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Quercetin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Quercetin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Quercetin</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Protease Inhibitors</term>
<term>Quercetin</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Quercétine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Inhibiteurs de protéases</term>
<term>Quercétine</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Quercétine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Drug Design</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Structure</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conception de médicament</term>
<term>Cysteine endopeptidases</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Protéines virales</term>
<term>Quercétine</term>
<term>Relation structure-activité</term>
<term>Sites de fixation</term>
<term>Structure moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is one of the most promising targets for discovery of drugs against SARS, because of its critical role in the viral life cycle. In this study, a natural compound called quercetin-3-beta-galactoside was identified as an inhibitor of the protease by molecular docking, SPR/FRET-based bioassays, and mutagenesis studies. Both molecular modeling and Q189A mutation revealed that Gln189 plays a key role in the binding. Furthermore, experimental evidence showed that the secondary structure and enzymatic activity of SARS-CoV 3CL(pro) were not affected by the Q189A mutation. With the help of molecular modeling, eight new derivatives of the natural product were designed and synthesized. Bioassay results reveal salient features of the structure-activity relationship of the new compounds: (1) removal of the 7-hydroxy group of the quercetin moiety decreases the bioactivity of the derivatives; (2) acetoxylation of the sugar moiety abolishes inhibitor action; (3) introduction of a large sugar substituent on 7-hydroxy of quercetin can be tolerated; (4) replacement of the galactose moiety with other sugars does not affect inhibitor potency. This study not only reveals a new class of compounds as potential drug leads against the SARS virus, but also provides a solid understanding of the mechanism of inhibition against the target enzyme.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17046271</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0968-0896</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>14</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2006</Year>
<Month>Dec</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Bioorganic & medicinal chemistry</Title>
<ISOAbbreviation>Bioorg. Med. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features.</ArticleTitle>
<Pagination>
<MedlinePgn>8295-306</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is one of the most promising targets for discovery of drugs against SARS, because of its critical role in the viral life cycle. In this study, a natural compound called quercetin-3-beta-galactoside was identified as an inhibitor of the protease by molecular docking, SPR/FRET-based bioassays, and mutagenesis studies. Both molecular modeling and Q189A mutation revealed that Gln189 plays a key role in the binding. Furthermore, experimental evidence showed that the secondary structure and enzymatic activity of SARS-CoV 3CL(pro) were not affected by the Q189A mutation. With the help of molecular modeling, eight new derivatives of the natural product were designed and synthesized. Bioassay results reveal salient features of the structure-activity relationship of the new compounds: (1) removal of the 7-hydroxy group of the quercetin moiety decreases the bioactivity of the derivatives; (2) acetoxylation of the sugar moiety abolishes inhibitor action; (3) introduction of a large sugar substituent on 7-hydroxy of quercetin can be tolerated; (4) replacement of the galactose moiety with other sugars does not affect inhibitor potency. This study not only reveals a new class of compounds as potential drug leads against the SARS virus, but also provides a solid understanding of the mechanism of inhibition against the target enzyme.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Lili</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Cheng</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Weijun</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liew</LastName>
<ForeName>Oi Wah</ForeName>
<Initials>OW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Weiliang</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Puah</LastName>
<ForeName>Chum Mok</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Xu</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Hualiang</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>10</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Bioorg Med Chem</MedlineTA>
<NlmUniqueID>9413298</NlmUniqueID>
<ISSNLinking>0968-0896</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011480">Protease Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8O1CR18L82</RegistryNumber>
<NameOfSubstance UI="C021304">hyperoside</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9IKM0I5T1E</RegistryNumber>
<NameOfSubstance UI="D011794">Quercetin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015195" MajorTopicYN="N">Drug Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011480" MajorTopicYN="N">Protease Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011794" MajorTopicYN="N">Quercetin</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2006</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17046271</ArticleId>
<ArticleId IdType="pii">S0968-0896(06)00731-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.bmc.2006.09.014</ArticleId>
<ArticleId IdType="pmc">PMC7125754</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Jan 7;280(1):164-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Jul 22;333(1):194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15950190</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23):24765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2005 Jun 30;48(13):4469-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15974598</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2004 Oct 22;576(3):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15498556</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jun 11;318(4):862-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147951</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Aug 15;308(1):148-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890493</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2000 Oct 5;43(20):3752-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11020290</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2005 Oct;68(1):36-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115693</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1977-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671062</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Apr 20;43(15):4568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Pharm Ber Dtsch Pharm Ges. 1955;288(2):58-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14377518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682352</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2004 Oct;11(10):1445-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Oct;78(20):11334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452254</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10012-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15226499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Mol Med. 2003 Aug;9(8):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928032</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 May 4;43(17):4906-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109248</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1995-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671061</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2744-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409251</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Inf Model. 2005 Jan-Feb;45(1):10-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15667124</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Drug Chem Toxicol. 2004 May;27(2):145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15198074</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Cancer. 2002 Apr 10;98(5):761-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11920648</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Aug 20;321(2):370-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358186</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2004 Sep 10;574(1-3):116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358550</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Pharmacol Sin. 2003 Jun;24(6):497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12791174</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biochem. 2005 Feb;270(1-2):147-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15792364</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):31257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Expr Purif. 2003 Dec;32(2):302-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):7095-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890949</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Aided Mol Des. 2001 May;15(5):411-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11394736</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Gang" sort="Chen, Gang" uniqKey="Chen G" first="Gang" last="Chen">Gang Chen</name>
<name sortKey="Jiang, Hualiang" sort="Jiang, Hualiang" uniqKey="Jiang H" first="Hualiang" last="Jiang">Hualiang Jiang</name>
<name sortKey="Li, Jian" sort="Li, Jian" uniqKey="Li J" first="Jian" last="Li">Jian Li</name>
<name sortKey="Liew, Oi Wah" sort="Liew, Oi Wah" uniqKey="Liew O" first="Oi Wah" last="Liew">Oi Wah Liew</name>
<name sortKey="Liu, Hong" sort="Liu, Hong" uniqKey="Liu H" first="Hong" last="Liu">Hong Liu</name>
<name sortKey="Luo, Cheng" sort="Luo, Cheng" uniqKey="Luo C" first="Cheng" last="Luo">Cheng Luo</name>
<name sortKey="Puah, Chum Mok" sort="Puah, Chum Mok" uniqKey="Puah C" first="Chum Mok" last="Puah">Chum Mok Puah</name>
<name sortKey="Shen, Xu" sort="Shen, Xu" uniqKey="Shen X" first="Xu" last="Shen">Xu Shen</name>
<name sortKey="Xu, Weijun" sort="Xu, Weijun" uniqKey="Xu W" first="Weijun" last="Xu">Weijun Xu</name>
<name sortKey="Zhu, Weiliang" sort="Zhu, Weiliang" uniqKey="Zhu W" first="Weiliang" last="Zhu">Weiliang Zhu</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Lili" sort="Chen, Lili" uniqKey="Chen L" first="Lili" last="Chen">Lili Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:17046271
   |texte=   Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:17046271" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021