Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS/avian coronaviruses.

Identifieur interne : 002016 ( PubMed/Checkpoint ); précédent : 002015; suivant : 002017

SARS/avian coronaviruses.

Auteurs : C. Monceyron Jonassen [Norvège]

Source :

RBID : pubmed:17058491

Descripteurs français

English descriptors

Abstract

In the hunt for the aetiology of the SARS outbreak in 2003, a newly developed virus DNA micro-array was successfully used to hybridise PCR products obtained by random amplification of nucleic acids extracted from a cell culture infected with material from a SARS patient. The SARS agent was found to hybridise with micro-array probes from both coronaviruses and astroviruses, but one of the coronavirus probes and the four astrovirus probes contained redundant sequences, spanning a highly conserved motif, named s2m, found at the 3' end of the genomes of almost all astroviruses, one picornavirus, and the poultry coronaviruses. The three other coronavirus probes, that hybridised with the SARS agent, were located in the replicase gene, and it could be concluded that the SARS agent was a novel coronavirus, harbouring s2m. The presence of this motif in different virus families is probably the result of recombinations between unrelated viruses, but its presence in both poultry and SARS coronaviruses could suggest a bird involvement in the history of the SARS coronavirus. A recent screening of wild birds for the presence of coronaviruses, using a pan-coronavirus RT-PCR, led to the identification of novel coronaviruses in the three species studied. Phylogenetic analyses performed on both replicase gene and nucleocapsid protein could not add support to a close relationship between avian and SARS coronaviruses, but all the novel avian coronaviruses were found to harbour s2m. The motif is inserted at a homologous place in avian and SARS coronavirus genomes, but in a somewhat different context for the SARS coronavirus. If the presence of s2m in these viruses is a result of two separate recombination events, this suggests that its particular position in these genomes is the only one that would not be deleterious for coronaviral replication, or that it is the result of a copy-choice recombination between coronaviruses, following an ancestral introduction in the coronavirus family by an unrelated virus. In conclusion, the relative high frequencies of recombination observed both experimentally and in the natural evolution of RNA viruses, indicate that horizontal gene transfer does occur, even between unrelated viruses. This might represent a challenge in the rapid identification of novel pathogens with DNA micro-array techniques.

PubMed: 17058491


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17058491

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS/avian coronaviruses.</title>
<author>
<name sortKey="Monceyron Jonassen, C" sort="Monceyron Jonassen, C" uniqKey="Monceyron Jonassen C" first="C" last="Monceyron Jonassen">C. Monceyron Jonassen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Section for Virology and Serology, National Veterinary Institute, Oslo, Norway. christine.monceyron-jonassen@vetinst.no</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Section for Virology and Serology, National Veterinary Institute, Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:17058491</idno>
<idno type="pmid">17058491</idno>
<idno type="wicri:Area/PubMed/Corpus">002008</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002008</idno>
<idno type="wicri:Area/PubMed/Curation">002008</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002008</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002016</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002016</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS/avian coronaviruses.</title>
<author>
<name sortKey="Monceyron Jonassen, C" sort="Monceyron Jonassen, C" uniqKey="Monceyron Jonassen C" first="C" last="Monceyron Jonassen">C. Monceyron Jonassen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Section for Virology and Serology, National Veterinary Institute, Oslo, Norway. christine.monceyron-jonassen@vetinst.no</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Section for Virology and Serology, National Veterinary Institute, Oslo</wicri:regionArea>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Developments in biologicals</title>
<idno type="ISSN">1424-6074</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Animals, Wild (virology)</term>
<term>Base Sequence</term>
<term>Bird Diseases (virology)</term>
<term>Birds (virology)</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus (genetics)</term>
<term>Coronavirus (isolation & purification)</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Recombination, Genetic</term>
<term>Severe Acute Respiratory Syndrome (veterinary)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Animaux sauvages (virologie)</term>
<term>Cellules Vero</term>
<term>Coronavirus (génétique)</term>
<term>Coronavirus (isolement et purification)</term>
<term>Données de séquences moléculaires</term>
<term>Maladies des oiseaux (virologie)</term>
<term>Oiseaux (virologie)</term>
<term>Recombinaison génétique</term>
<term>Syndrome respiratoire aigu sévère (médecine vétérinaire)</term>
<term>Syndrome respiratoire aigu sévère (virologie)</term>
<term>Séquence nucléotidique</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Animaux sauvages</term>
<term>Maladies des oiseaux</term>
<term>Oiseaux</term>
<term>Syndrome respiratoire aigu sévère</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Animals, Wild</term>
<term>Bird Diseases</term>
<term>Birds</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Chlorocebus aethiops</term>
<term>Molecular Sequence Data</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Recombination, Genetic</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Données de séquences moléculaires</term>
<term>Recombinaison génétique</term>
<term>Séquence nucléotidique</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the hunt for the aetiology of the SARS outbreak in 2003, a newly developed virus DNA micro-array was successfully used to hybridise PCR products obtained by random amplification of nucleic acids extracted from a cell culture infected with material from a SARS patient. The SARS agent was found to hybridise with micro-array probes from both coronaviruses and astroviruses, but one of the coronavirus probes and the four astrovirus probes contained redundant sequences, spanning a highly conserved motif, named s2m, found at the 3' end of the genomes of almost all astroviruses, one picornavirus, and the poultry coronaviruses. The three other coronavirus probes, that hybridised with the SARS agent, were located in the replicase gene, and it could be concluded that the SARS agent was a novel coronavirus, harbouring s2m. The presence of this motif in different virus families is probably the result of recombinations between unrelated viruses, but its presence in both poultry and SARS coronaviruses could suggest a bird involvement in the history of the SARS coronavirus. A recent screening of wild birds for the presence of coronaviruses, using a pan-coronavirus RT-PCR, led to the identification of novel coronaviruses in the three species studied. Phylogenetic analyses performed on both replicase gene and nucleocapsid protein could not add support to a close relationship between avian and SARS coronaviruses, but all the novel avian coronaviruses were found to harbour s2m. The motif is inserted at a homologous place in avian and SARS coronavirus genomes, but in a somewhat different context for the SARS coronavirus. If the presence of s2m in these viruses is a result of two separate recombination events, this suggests that its particular position in these genomes is the only one that would not be deleterious for coronaviral replication, or that it is the result of a copy-choice recombination between coronaviruses, following an ancestral introduction in the coronavirus family by an unrelated virus. In conclusion, the relative high frequencies of recombination observed both experimentally and in the natural evolution of RNA viruses, indicate that horizontal gene transfer does occur, even between unrelated viruses. This might represent a challenge in the rapid identification of novel pathogens with DNA micro-array techniques.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17058491</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>11</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1424-6074</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>126</Volume>
<PubDate>
<Year>2006</Year>
</PubDate>
</JournalIssue>
<Title>Developments in biologicals</Title>
<ISOAbbreviation>Dev Biol (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS/avian coronaviruses.</ArticleTitle>
<Pagination>
<MedlinePgn>161-9; discussion 326-7</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In the hunt for the aetiology of the SARS outbreak in 2003, a newly developed virus DNA micro-array was successfully used to hybridise PCR products obtained by random amplification of nucleic acids extracted from a cell culture infected with material from a SARS patient. The SARS agent was found to hybridise with micro-array probes from both coronaviruses and astroviruses, but one of the coronavirus probes and the four astrovirus probes contained redundant sequences, spanning a highly conserved motif, named s2m, found at the 3' end of the genomes of almost all astroviruses, one picornavirus, and the poultry coronaviruses. The three other coronavirus probes, that hybridised with the SARS agent, were located in the replicase gene, and it could be concluded that the SARS agent was a novel coronavirus, harbouring s2m. The presence of this motif in different virus families is probably the result of recombinations between unrelated viruses, but its presence in both poultry and SARS coronaviruses could suggest a bird involvement in the history of the SARS coronavirus. A recent screening of wild birds for the presence of coronaviruses, using a pan-coronavirus RT-PCR, led to the identification of novel coronaviruses in the three species studied. Phylogenetic analyses performed on both replicase gene and nucleocapsid protein could not add support to a close relationship between avian and SARS coronaviruses, but all the novel avian coronaviruses were found to harbour s2m. The motif is inserted at a homologous place in avian and SARS coronavirus genomes, but in a somewhat different context for the SARS coronavirus. If the presence of s2m in these viruses is a result of two separate recombination events, this suggests that its particular position in these genomes is the only one that would not be deleterious for coronaviral replication, or that it is the result of a copy-choice recombination between coronaviruses, following an ancestral introduction in the coronavirus family by an unrelated virus. In conclusion, the relative high frequencies of recombination observed both experimentally and in the natural evolution of RNA viruses, indicate that horizontal gene transfer does occur, even between unrelated viruses. This might represent a challenge in the rapid identification of novel pathogens with DNA micro-array techniques.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Monceyron Jonassen</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Section for Virology and Serology, National Veterinary Institute, Oslo, Norway. christine.monceyron-jonassen@vetinst.no</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Dev Biol (Basel)</MedlineTA>
<NlmUniqueID>100940058</NlmUniqueID>
<ISSNLinking>1424-6074</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000835" MajorTopicYN="N">Animals, Wild</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001715" MajorTopicYN="N">Bird Diseases</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001717" MajorTopicYN="N">Birds</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17058491</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
</country>
<region>
<li>Østlandet</li>
</region>
<settlement>
<li>Oslo</li>
</settlement>
</list>
<tree>
<country name="Norvège">
<region name="Østlandet">
<name sortKey="Monceyron Jonassen, C" sort="Monceyron Jonassen, C" uniqKey="Monceyron Jonassen C" first="C" last="Monceyron Jonassen">C. Monceyron Jonassen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002016 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002016 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:17058491
   |texte=   SARS/avian coronaviruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:17058491" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021