Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch.

Identifieur interne : 001E39 ( PubMed/Checkpoint ); précédent : 001E38; suivant : 001E40

Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch.

Auteurs : Jeremiah S. Joseph [États-Unis] ; Kumar Singh Saikatendu ; Vanitha Subramanian ; Benjamin W. Neuman ; Michael J. Buchmeier ; Raymond C. Stevens ; Peter Kuhn

Source :

RBID : pubmed:17409150

Descripteurs français

English descriptors

Abstract

Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 A. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by approximately 120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.

DOI: 10.1128/JVI.02817-06
PubMed: 17409150


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17409150

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch.</title>
<author>
<name sortKey="Joseph, Jeremiah S" sort="Joseph, Jeremiah S" uniqKey="Joseph J" first="Jeremiah S" last="Joseph">Jeremiah S. Joseph</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, 10550 N. Torrey Pines Road, CB265, The Scripps Research Institute, La Jolla, CA 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, 10550 N. Torrey Pines Road, CB265, The Scripps Research Institute, La Jolla, CA 92037</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saikatendu, Kumar Singh" sort="Saikatendu, Kumar Singh" uniqKey="Saikatendu K" first="Kumar Singh" last="Saikatendu">Kumar Singh Saikatendu</name>
</author>
<author>
<name sortKey="Subramanian, Vanitha" sort="Subramanian, Vanitha" uniqKey="Subramanian V" first="Vanitha" last="Subramanian">Vanitha Subramanian</name>
</author>
<author>
<name sortKey="Neuman, Benjamin W" sort="Neuman, Benjamin W" uniqKey="Neuman B" first="Benjamin W" last="Neuman">Benjamin W. Neuman</name>
</author>
<author>
<name sortKey="Buchmeier, Michael J" sort="Buchmeier, Michael J" uniqKey="Buchmeier M" first="Michael J" last="Buchmeier">Michael J. Buchmeier</name>
</author>
<author>
<name sortKey="Stevens, Raymond C" sort="Stevens, Raymond C" uniqKey="Stevens R" first="Raymond C" last="Stevens">Raymond C. Stevens</name>
</author>
<author>
<name sortKey="Kuhn, Peter" sort="Kuhn, Peter" uniqKey="Kuhn P" first="Peter" last="Kuhn">Peter Kuhn</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17409150</idno>
<idno type="pmid">17409150</idno>
<idno type="doi">10.1128/JVI.02817-06</idno>
<idno type="wicri:Area/PubMed/Corpus">001E53</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E53</idno>
<idno type="wicri:Area/PubMed/Curation">001E53</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E53</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E39</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch.</title>
<author>
<name sortKey="Joseph, Jeremiah S" sort="Joseph, Jeremiah S" uniqKey="Joseph J" first="Jeremiah S" last="Joseph">Jeremiah S. Joseph</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, 10550 N. Torrey Pines Road, CB265, The Scripps Research Institute, La Jolla, CA 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, 10550 N. Torrey Pines Road, CB265, The Scripps Research Institute, La Jolla, CA 92037</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saikatendu, Kumar Singh" sort="Saikatendu, Kumar Singh" uniqKey="Saikatendu K" first="Kumar Singh" last="Saikatendu">Kumar Singh Saikatendu</name>
</author>
<author>
<name sortKey="Subramanian, Vanitha" sort="Subramanian, Vanitha" uniqKey="Subramanian V" first="Vanitha" last="Subramanian">Vanitha Subramanian</name>
</author>
<author>
<name sortKey="Neuman, Benjamin W" sort="Neuman, Benjamin W" uniqKey="Neuman B" first="Benjamin W" last="Neuman">Benjamin W. Neuman</name>
</author>
<author>
<name sortKey="Buchmeier, Michael J" sort="Buchmeier, Michael J" uniqKey="Buchmeier M" first="Michael J" last="Buchmeier">Michael J. Buchmeier</name>
</author>
<author>
<name sortKey="Stevens, Raymond C" sort="Stevens, Raymond C" uniqKey="Stevens R" first="Raymond C" last="Stevens">Raymond C. Stevens</name>
</author>
<author>
<name sortKey="Kuhn, Peter" sort="Kuhn, Peter" uniqKey="Kuhn P" first="Peter" last="Kuhn">Peter Kuhn</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allosteric Site</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Catalytic Domain</term>
<term>Cloning, Molecular</term>
<term>Crystallography, X-Ray</term>
<term>Dimerization</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Manganese (chemistry)</term>
<term>Molecular Conformation</term>
<term>Mutagenesis</term>
<term>Protein Conformation</term>
<term>RNA Replicase (chemistry)</term>
<term>SARS Virus (enzymology)</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>Xenopus laevis</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Clonage moléculaire</term>
<term>Conformation des protéines</term>
<term>Conformation moléculaire</term>
<term>Cristallographie aux rayons X</term>
<term>Dimérisation</term>
<term>Domaine catalytique</term>
<term>Manganèse ()</term>
<term>Mutagenèse</term>
<term>Protéines virales non structurales ()</term>
<term>RNA replicase ()</term>
<term>Site allostérique</term>
<term>Sites de fixation</term>
<term>Virus du SRAS (enzymologie)</term>
<term>Xenopus laevis</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Manganese</term>
<term>RNA Replicase</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Allosteric Site</term>
<term>Animals</term>
<term>Binding Sites</term>
<term>Catalytic Domain</term>
<term>Cloning, Molecular</term>
<term>Crystallography, X-Ray</term>
<term>Dimerization</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Molecular Conformation</term>
<term>Mutagenesis</term>
<term>Protein Conformation</term>
<term>Xenopus laevis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Clonage moléculaire</term>
<term>Conformation des protéines</term>
<term>Conformation moléculaire</term>
<term>Cristallographie aux rayons X</term>
<term>Dimérisation</term>
<term>Domaine catalytique</term>
<term>Manganèse</term>
<term>Mutagenèse</term>
<term>Protéines virales non structurales</term>
<term>RNA replicase</term>
<term>Site allostérique</term>
<term>Sites de fixation</term>
<term>Xenopus laevis</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 A. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by approximately 120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17409150</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>07</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>81</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2007</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch.</ArticleTitle>
<Pagination>
<MedlinePgn>6700-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 A. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by approximately 120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Joseph</LastName>
<ForeName>Jeremiah S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, 10550 N. Torrey Pines Road, CB265, The Scripps Research Institute, La Jolla, CA 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saikatendu</LastName>
<ForeName>Kumar Singh</ForeName>
<Initials>KS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Subramanian</LastName>
<ForeName>Vanitha</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Neuman</LastName>
<ForeName>Benjamin W</ForeName>
<Initials>BW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Buchmeier</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stevens</LastName>
<ForeName>Raymond C</ForeName>
<Initials>RC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kuhn</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2OZK</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Y1-CO-1020</GrantID>
<Acronym>CO</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>Y1-GM-1104</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>04</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="D012324">RNA Replicase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="C000657925">nidoviral uridylate-specific endoribonuclease</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000495" MajorTopicYN="N">Allosteric Site</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="N">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012324" MajorTopicYN="N">RNA Replicase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014982" MajorTopicYN="N">Xenopus laevis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17409150</ArticleId>
<ArticleId IdType="pii">JVI.02817-06</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.02817-06</ArticleId>
<ArticleId IdType="pmc">PMC1900129</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 1999 Aug 15;342 ( Pt 1):119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10432308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Nov 19;274(47):33732-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Jan;74(1):580-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10590153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Oct;57(Pt 10):1373-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11567148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;494:1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Jan;9(1):124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 11;278(15):13026-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12571235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2003 Jun;24(6):489-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12791173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11146-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1454792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Oct 23;553(3):451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14572668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Dec;84(Pt 12):3275-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:31-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 13;280(19):18996-9002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Nov 11;353(5):1106-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16216269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Feb;80(4):1653-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Aug 11;361(2):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7894-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11892-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16895992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 1;6(12):3779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3428275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1986 Dec 9;14(23):9229-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3797239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Jan;71(1):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8985424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1997;142(3):629-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1998 Dec;4(12):1569-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9848654</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Buchmeier, Michael J" sort="Buchmeier, Michael J" uniqKey="Buchmeier M" first="Michael J" last="Buchmeier">Michael J. Buchmeier</name>
<name sortKey="Kuhn, Peter" sort="Kuhn, Peter" uniqKey="Kuhn P" first="Peter" last="Kuhn">Peter Kuhn</name>
<name sortKey="Neuman, Benjamin W" sort="Neuman, Benjamin W" uniqKey="Neuman B" first="Benjamin W" last="Neuman">Benjamin W. Neuman</name>
<name sortKey="Saikatendu, Kumar Singh" sort="Saikatendu, Kumar Singh" uniqKey="Saikatendu K" first="Kumar Singh" last="Saikatendu">Kumar Singh Saikatendu</name>
<name sortKey="Stevens, Raymond C" sort="Stevens, Raymond C" uniqKey="Stevens R" first="Raymond C" last="Stevens">Raymond C. Stevens</name>
<name sortKey="Subramanian, Vanitha" sort="Subramanian, Vanitha" uniqKey="Subramanian V" first="Vanitha" last="Subramanian">Vanitha Subramanian</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Joseph, Jeremiah S" sort="Joseph, Jeremiah S" uniqKey="Joseph J" first="Jeremiah S" last="Joseph">Jeremiah S. Joseph</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E39 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001E39 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:17409150
   |texte=   Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:17409150" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021