Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.

Identifieur interne : 001E38 ( PubMed/Checkpoint ); précédent : 001E37; suivant : 001E39

Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.

Auteurs : Ting-Wai Lee [Canada] ; Maia M. Cherney ; Jie Liu ; Karen Ellis James ; James C. Powers ; Lindsay D. Eltis ; Michael N G. James

Source :

RBID : pubmed:17196984

Descripteurs français

English descriptors

Abstract

The SARS coronavirus main peptidase (SARS-CoV M(pro)) plays an essential role in the life-cycle of the virus and is a primary target for the development of anti-SARS agents. Here, we report the crystal structure of M(pro) at a resolution of 1.82 Angstroms, in space group P2(1) at pH 6.0. In contrast to the previously reported structure of M(pro) in the same space group at the same pH, the active sites and the S1 specificity pockets of both protomers in the structure of M(pro) reported here are in the catalytically competent conformation, suggesting their conformational flexibility. We report two crystal structures of M(pro) having an additional Ala at the N terminus of each protomer (M(+A(-1))(pro)), both at a resolution of 2.00 Angstroms, in space group P4(3)2(1)2: one unbound and one bound by a substrate-like aza-peptide epoxide (APE). In the unbound form, the active sites and the S1 specificity pockets of both protomers of M(+A(-1))(pro) are observed in a collapsed (catalytically incompetent) conformation; whereas they are in an open (catalytically competent) conformation in the APE-bound form. The observed conformational flexibility of the active sites and the S1 specificity pockets suggests that these parts of M(pro) exist in dynamic equilibrium. The structural data further suggest that the binding of APE to M(pro) follows an induced-fit model. The substrate likely also binds in an induced-fit manner in a process that may help drive the catalytic cycle.

DOI: 10.1016/j.jmb.2006.11.078
PubMed: 17196984


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17196984

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.</title>
<author>
<name sortKey="Lee, Ting Wai" sort="Lee, Ting Wai" uniqKey="Lee T" first="Ting-Wai" last="Lee">Ting-Wai Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cherney, Maia M" sort="Cherney, Maia M" uniqKey="Cherney M" first="Maia M" last="Cherney">Maia M. Cherney</name>
</author>
<author>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
</author>
<author>
<name sortKey="James, Karen Ellis" sort="James, Karen Ellis" uniqKey="James K" first="Karen Ellis" last="James">Karen Ellis James</name>
</author>
<author>
<name sortKey="Powers, James C" sort="Powers, James C" uniqKey="Powers J" first="James C" last="Powers">James C. Powers</name>
</author>
<author>
<name sortKey="Eltis, Lindsay D" sort="Eltis, Lindsay D" uniqKey="Eltis L" first="Lindsay D" last="Eltis">Lindsay D. Eltis</name>
</author>
<author>
<name sortKey="James, Michael N G" sort="James, Michael N G" uniqKey="James M" first="Michael N G" last="James">Michael N G. James</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17196984</idno>
<idno type="pmid">17196984</idno>
<idno type="doi">10.1016/j.jmb.2006.11.078</idno>
<idno type="wicri:Area/PubMed/Corpus">001F33</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F33</idno>
<idno type="wicri:Area/PubMed/Curation">001F33</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F33</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E38</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E38</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.</title>
<author>
<name sortKey="Lee, Ting Wai" sort="Lee, Ting Wai" uniqKey="Lee T" first="Ting-Wai" last="Lee">Ting-Wai Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cherney, Maia M" sort="Cherney, Maia M" uniqKey="Cherney M" first="Maia M" last="Cherney">Maia M. Cherney</name>
</author>
<author>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
</author>
<author>
<name sortKey="James, Karen Ellis" sort="James, Karen Ellis" uniqKey="James K" first="Karen Ellis" last="James">Karen Ellis James</name>
</author>
<author>
<name sortKey="Powers, James C" sort="Powers, James C" uniqKey="Powers J" first="James C" last="Powers">James C. Powers</name>
</author>
<author>
<name sortKey="Eltis, Lindsay D" sort="Eltis, Lindsay D" uniqKey="Eltis L" first="Lindsay D" last="Eltis">Lindsay D. Eltis</name>
</author>
<author>
<name sortKey="James, Michael N G" sort="James, Michael N G" uniqKey="James M" first="Michael N G" last="James">Michael N G. James</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Crystallography, X-Ray</term>
<term>Epoxy Compounds (chemistry)</term>
<term>Epoxy Compounds (metabolism)</term>
<term>Models, Molecular</term>
<term>Peptides (chemistry)</term>
<term>Peptides (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Protons</term>
<term>SARS Virus (enzymology)</term>
<term>Static Electricity</term>
<term>Substrate Specificity</term>
<term>Viral Matrix Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Composés époxy ()</term>
<term>Composés époxy (métabolisme)</term>
<term>Cristallographie aux rayons X</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Peptides ()</term>
<term>Peptides (métabolisme)</term>
<term>Protons</term>
<term>Protéines de la matrice virale ()</term>
<term>Sites de fixation</term>
<term>Spécificité du substrat</term>
<term>Structure tertiaire des protéines</term>
<term>Virus du SRAS (enzymologie)</term>
<term>Électricité statique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Epoxy Compounds</term>
<term>Peptides</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Epoxy Compounds</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés époxy</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Crystallography, X-Ray</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Protons</term>
<term>Static Electricity</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Composés époxy</term>
<term>Cristallographie aux rayons X</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Peptides</term>
<term>Protons</term>
<term>Protéines de la matrice virale</term>
<term>Sites de fixation</term>
<term>Spécificité du substrat</term>
<term>Structure tertiaire des protéines</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The SARS coronavirus main peptidase (SARS-CoV M(pro)) plays an essential role in the life-cycle of the virus and is a primary target for the development of anti-SARS agents. Here, we report the crystal structure of M(pro) at a resolution of 1.82 Angstroms, in space group P2(1) at pH 6.0. In contrast to the previously reported structure of M(pro) in the same space group at the same pH, the active sites and the S1 specificity pockets of both protomers in the structure of M(pro) reported here are in the catalytically competent conformation, suggesting their conformational flexibility. We report two crystal structures of M(pro) having an additional Ala at the N terminus of each protomer (M(+A(-1))(pro)), both at a resolution of 2.00 Angstroms, in space group P4(3)2(1)2: one unbound and one bound by a substrate-like aza-peptide epoxide (APE). In the unbound form, the active sites and the S1 specificity pockets of both protomers of M(+A(-1))(pro) are observed in a collapsed (catalytically incompetent) conformation; whereas they are in an open (catalytically competent) conformation in the APE-bound form. The observed conformational flexibility of the active sites and the S1 specificity pockets suggests that these parts of M(pro) exist in dynamic equilibrium. The structural data further suggest that the binding of APE to M(pro) follows an induced-fit model. The substrate likely also binds in an induced-fit manner in a process that may help drive the catalytic cycle.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17196984</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0022-2836</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>366</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2007</Year>
<Month>Feb</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.</ArticleTitle>
<Pagination>
<MedlinePgn>916-32</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The SARS coronavirus main peptidase (SARS-CoV M(pro)) plays an essential role in the life-cycle of the virus and is a primary target for the development of anti-SARS agents. Here, we report the crystal structure of M(pro) at a resolution of 1.82 Angstroms, in space group P2(1) at pH 6.0. In contrast to the previously reported structure of M(pro) in the same space group at the same pH, the active sites and the S1 specificity pockets of both protomers in the structure of M(pro) reported here are in the catalytically competent conformation, suggesting their conformational flexibility. We report two crystal structures of M(pro) having an additional Ala at the N terminus of each protomer (M(+A(-1))(pro)), both at a resolution of 2.00 Angstroms, in space group P4(3)2(1)2: one unbound and one bound by a substrate-like aza-peptide epoxide (APE). In the unbound form, the active sites and the S1 specificity pockets of both protomers of M(+A(-1))(pro) are observed in a collapsed (catalytically incompetent) conformation; whereas they are in an open (catalytically competent) conformation in the APE-bound form. The observed conformational flexibility of the active sites and the S1 specificity pockets suggests that these parts of M(pro) exist in dynamic equilibrium. The structural data further suggest that the binding of APE to M(pro) follows an induced-fit model. The substrate likely also binds in an induced-fit manner in a process that may help drive the catalytic cycle.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Ting-Wai</ForeName>
<Initials>TW</Initials>
<AffiliationInfo>
<Affiliation>Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cherney</LastName>
<ForeName>Maia M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>James</LastName>
<ForeName>Karen Ellis</ForeName>
<Initials>KE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Powers</LastName>
<ForeName>James C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eltis</LastName>
<ForeName>Lindsay D</ForeName>
<Initials>LD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>James</LastName>
<ForeName>Michael N G</ForeName>
<Initials>MN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2GT7</AccessionNumber>
<AccessionNumber>2GT8</AccessionNumber>
<AccessionNumber>2GTB</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>12</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004852">Epoxy Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011522">Protons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>108502-71-2</RegistryNumber>
<NameOfSubstance UI="C067997">M protein, Coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004852" MajorTopicYN="N">Epoxy Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011522" MajorTopicYN="N">Protons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2006</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17196984</ArticleId>
<ArticleId IdType="pii">S0022-2836(06)01637-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2006.11.078</ArticleId>
<ArticleId IdType="pmc">PMC7094323</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Dec;15(6):664-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biol Chem. 2001 May;382(5):727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11517925</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23):24765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 May 4;43(17):4906-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109248</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-2315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2002 Jul 1;21(13):3213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Eng. 1995 Feb;8(2):127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7630882</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):31257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1986 Aug 20;190(4):593-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3097327</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1991 Mar 20;218(2):465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2010920</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2005 Nov 11;353(5):1137-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219322</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Apr 20;43(15):4568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2004 Sep;11(9):1293-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15380189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 1999 Apr-May;125(2-3):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10222271</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Jan 7;280(1):164-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2004 Oct;11(10):1445-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1997 May;71(5):3992-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9094676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10012-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15226499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1985 Jul 5;229(4708):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3892686</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biol Chem. 2003 Dec;384(12):1613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14719804</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Nov 30;43(47):14958-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15554703</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Jul;59(Pt 7):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12832755</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2006 Mar;273(5):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478476</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1992 Jan 30;355(6359):472-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481394</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2002 Dec;102(12):4639-750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12475205</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Respir Res. 2005 Jan 20;6:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661082</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2005 Nov 3;48(22):6767-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16250632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Jun 17;280(24):22741-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2002 Nov 7;45(23):4958-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2005 Nov 18;354(1):25-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242152</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 Nov 1;61(Pt 11):964-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16511208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2001 Jul;75(14):6676-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2005 Oct;3(10):e324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16128623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2004 Dec 2;47(25):6113-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15566280</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2002 Mar;83(Pt 3):581-593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842253</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jun 11;318(4):862-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147951</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2004 Mar 11;47(6):1553-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14998341</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1967 Apr 20;27(2):157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6035483</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):7095-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890949</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cherney, Maia M" sort="Cherney, Maia M" uniqKey="Cherney M" first="Maia M" last="Cherney">Maia M. Cherney</name>
<name sortKey="Eltis, Lindsay D" sort="Eltis, Lindsay D" uniqKey="Eltis L" first="Lindsay D" last="Eltis">Lindsay D. Eltis</name>
<name sortKey="James, Karen Ellis" sort="James, Karen Ellis" uniqKey="James K" first="Karen Ellis" last="James">Karen Ellis James</name>
<name sortKey="James, Michael N G" sort="James, Michael N G" uniqKey="James M" first="Michael N G" last="James">Michael N G. James</name>
<name sortKey="Liu, Jie" sort="Liu, Jie" uniqKey="Liu J" first="Jie" last="Liu">Jie Liu</name>
<name sortKey="Powers, James C" sort="Powers, James C" uniqKey="Powers J" first="James C" last="Powers">James C. Powers</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Lee, Ting Wai" sort="Lee, Ting Wai" uniqKey="Lee T" first="Ting-Wai" last="Lee">Ting-Wai Lee</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001E38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:17196984
   |texte=   Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:17196984" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021