Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.

Identifieur interne : 001602 ( PubMed/Checkpoint ); précédent : 001601; suivant : 001603

SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.

Auteurs : Natalia Vasilenko [Canada] ; Igor Moshynskyy ; Alexander Zakhartchouk

Source :

RBID : pubmed:20144233

Descripteurs français

English descriptors

Abstract

The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm.

DOI: 10.1186/1743-422X-7-31
PubMed: 20144233


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20144233

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.</title>
<author>
<name sortKey="Vasilenko, Natalia" sort="Vasilenko, Natalia" uniqKey="Vasilenko N" first="Natalia" last="Vasilenko">Natalia Vasilenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3</wicri:regionArea>
<wicri:noRegion>SK S7N5E3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moshynskyy, Igor" sort="Moshynskyy, Igor" uniqKey="Moshynskyy I" first="Igor" last="Moshynskyy">Igor Moshynskyy</name>
</author>
<author>
<name sortKey="Zakhartchouk, Alexander" sort="Zakhartchouk, Alexander" uniqKey="Zakhartchouk A" first="Alexander" last="Zakhartchouk">Alexander Zakhartchouk</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20144233</idno>
<idno type="pmid">20144233</idno>
<idno type="doi">10.1186/1743-422X-7-31</idno>
<idno type="wicri:Area/PubMed/Corpus">001754</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001754</idno>
<idno type="wicri:Area/PubMed/Curation">001754</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001754</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001602</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001602</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.</title>
<author>
<name sortKey="Vasilenko, Natalia" sort="Vasilenko, Natalia" uniqKey="Vasilenko N" first="Natalia" last="Vasilenko">Natalia Vasilenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3</wicri:regionArea>
<wicri:noRegion>SK S7N5E3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moshynskyy, Igor" sort="Moshynskyy, Igor" uniqKey="Moshynskyy I" first="Igor" last="Moshynskyy">Igor Moshynskyy</name>
</author>
<author>
<name sortKey="Zakhartchouk, Alexander" sort="Zakhartchouk, Alexander" uniqKey="Zakhartchouk A" first="Alexander" last="Zakhartchouk">Alexander Zakhartchouk</name>
</author>
</analytic>
<series>
<title level="j">Virology journal</title>
<idno type="eISSN">1743-422X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acid Anhydride Hydrolases (metabolism)</term>
<term>Cell Line</term>
<term>Cytoplasm (chemistry)</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Immunoprecipitation</term>
<term>Microscopy, Confocal</term>
<term>Protein Binding</term>
<term>Protein Interaction Mapping</term>
<term>SARS Virus (physiology)</term>
<term>Two-Hybrid System Techniques</term>
<term>Viral Matrix Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acid anhydride hydrolases (métabolisme)</term>
<term>Cartographie d'interactions entre protéines</term>
<term>Cytoplasme ()</term>
<term>Humains</term>
<term>Immunoprécipitation</term>
<term>Interactions hôte-pathogène</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Microscopie confocale</term>
<term>Protéines de la matrice virale (métabolisme)</term>
<term>Techniques de double hybride</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acid Anhydride Hydrolases</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cytoplasm</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acid anhydride hydrolases</term>
<term>Protéines de la matrice virale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Immunoprecipitation</term>
<term>Microscopy, Confocal</term>
<term>Protein Binding</term>
<term>Protein Interaction Mapping</term>
<term>Two-Hybrid System Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartographie d'interactions entre protéines</term>
<term>Cytoplasme</term>
<term>Humains</term>
<term>Immunoprécipitation</term>
<term>Interactions hôte-pathogène</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Microscopie confocale</term>
<term>Techniques de double hybride</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20144233</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-422X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Virology journal</Title>
<ISOAbbreviation>Virol. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.</ArticleTitle>
<Pagination>
<MedlinePgn>31</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1743-422X-7-31</ELocationID>
<Abstract>
<AbstractText>The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vasilenko</LastName>
<ForeName>Natalia</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moshynskyy</LastName>
<ForeName>Igor</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zakhartchouk</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Virol J</MedlineTA>
<NlmUniqueID>101231645</NlmUniqueID>
<ISSNLinking>1743-422X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C488151">sars7a protein, SARS virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.-</RegistryNumber>
<NameOfSubstance UI="D017766">Acid Anhydride Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.17</RegistryNumber>
<NameOfSubstance UI="C020023">bis(5'-nucleosyl)tetraphosphatase (asymmetrical)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017766" MajorTopicYN="N">Acid Anhydride Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025941" MajorTopicYN="Y">Protein Interaction Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020798" MajorTopicYN="N">Two-Hybrid System Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>02</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20144233</ArticleId>
<ArticleId IdType="pii">1743-422X-7-31</ArticleId>
<ArticleId IdType="doi">10.1186/1743-422X-7-31</ArticleId>
<ArticleId IdType="pmc">PMC2831879</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Pharmacol Ther. 2000 Aug-Sep;87(2-3):73-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11007992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Apr;36(1):174-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10760174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2003 Jan 15;65(2):227-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 Dec 18;349(25):2431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(8):3863-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):622-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(13):6723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(14):7311-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem Cardiovasc Hematol Agents. 2003 Jun;1(2):151-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15320695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Mar;79(6):1791-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6952229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1982 Aug;126(1):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7128581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Oct;79(20):6142-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6959105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Feb 10;12(3):1609-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6701090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1983 Dec;80(24):7496-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6369319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1984 May;37(1):225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6373012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Jun 29;375(6534):812-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7596417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Sep 29;415(2):160-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9350987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 May 8;427(2):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9607303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Mar 24;256(3):474-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10080922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Jul 30;456(1):175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10452553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):14043-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2005 Jan;86(Pt 1):211-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Jan 15;191(2):193-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2005 Jan;13(1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005;2:66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16107218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(23):14909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jan;80(2):785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16378980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2006 Feb;151(2):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16155806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Mar 1;346(1):74-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16303160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 21;281(16):10669-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16431923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 May 19;343(4):1201-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16580632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(15):7287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(12):6346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Sep;28(18):5777-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18644867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2000 Aug-Sep;87(2-3):103-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11007994</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Moshynskyy, Igor" sort="Moshynskyy, Igor" uniqKey="Moshynskyy I" first="Igor" last="Moshynskyy">Igor Moshynskyy</name>
<name sortKey="Zakhartchouk, Alexander" sort="Zakhartchouk, Alexander" uniqKey="Zakhartchouk A" first="Alexander" last="Zakhartchouk">Alexander Zakhartchouk</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Vasilenko, Natalia" sort="Vasilenko, Natalia" uniqKey="Vasilenko N" first="Natalia" last="Vasilenko">Natalia Vasilenko</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001602 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001602 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:20144233
   |texte=   SARS coronavirus protein 7a interacts with human Ap4A-hydrolase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:20144233" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021