Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding.

Identifieur interne : 001601 ( PubMed/Checkpoint ); précédent : 001600; suivant : 001602

SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding.

Auteurs : Margaret A. Johnson [États-Unis] ; Amarnath Chatterjee ; Benjamin W. Neuman ; Kurt Wüthrich

Source :

RBID : pubmed:20493876

Descripteurs français

English descriptors

Abstract

Nonstructural protein 3 of the severe acute respiratory syndrome (SARS) coronavirus includes a "SARS-unique domain" (SUD) consisting of three globular domains separated by short linker peptide segments. This work reports NMR structure determinations of the C-terminal domain (SUD-C) and a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-domain construct. Both SUD-N and SUD-NM are monomeric and globular in solution; in SUD-NM, there is high mobility in the two-residue interdomain linking sequence, with no preferred relative orientation of the two domains. SUD-C adopts a frataxin like fold and has structural similarity to DNA-binding domains of DNA-modifying enzymes. The structures of both SUD-M (previously determined) and SUD-C (from the present study) are maintained in SUD-MC, where the two domains are flexibly linked. Gel-shift experiments showed that both SUD-C and SUD-MC bind to single-stranded RNA and recognize purine bases more strongly than pyrimidine bases, whereby SUD-MC binds to a more restricted set of purine-containing RNA sequences than SUD-M. NMR chemical shift perturbation experiments with observations of (15)N-labeled proteins further resulted in delineation of RNA binding sites (i.e., in SUD-M, a positively charged surface area with a pronounced cavity, and in SUD-C, several residues of an anti-parallel beta-sheet). Overall, the present data provide evidence for molecular mechanisms involving the concerted actions of SUD-M and SUD-C, which result in specific RNA binding that might be unique to the SUD and, thus, to the SARS coronavirus.

DOI: 10.1016/j.jmb.2010.05.027
PubMed: 20493876


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20493876

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding.</title>
<author>
<name sortKey="Johnson, Margaret A" sort="Johnson, Margaret A" uniqKey="Johnson M" first="Margaret A" last="Johnson">Margaret A. Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chatterjee, Amarnath" sort="Chatterjee, Amarnath" uniqKey="Chatterjee A" first="Amarnath" last="Chatterjee">Amarnath Chatterjee</name>
</author>
<author>
<name sortKey="Neuman, Benjamin W" sort="Neuman, Benjamin W" uniqKey="Neuman B" first="Benjamin W" last="Neuman">Benjamin W. Neuman</name>
</author>
<author>
<name sortKey="Wuthrich, Kurt" sort="Wuthrich, Kurt" uniqKey="Wuthrich K" first="Kurt" last="Wüthrich">Kurt Wüthrich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20493876</idno>
<idno type="pmid">20493876</idno>
<idno type="doi">10.1016/j.jmb.2010.05.027</idno>
<idno type="wicri:Area/PubMed/Corpus">001693</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001693</idno>
<idno type="wicri:Area/PubMed/Curation">001693</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001693</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001601</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001601</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding.</title>
<author>
<name sortKey="Johnson, Margaret A" sort="Johnson, Margaret A" uniqKey="Johnson M" first="Margaret A" last="Johnson">Margaret A. Johnson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chatterjee, Amarnath" sort="Chatterjee, Amarnath" uniqKey="Chatterjee A" first="Amarnath" last="Chatterjee">Amarnath Chatterjee</name>
</author>
<author>
<name sortKey="Neuman, Benjamin W" sort="Neuman, Benjamin W" uniqKey="Neuman B" first="Benjamin W" last="Neuman">Benjamin W. Neuman</name>
</author>
<author>
<name sortKey="Wuthrich, Kurt" sort="Wuthrich, Kurt" uniqKey="Wuthrich K" first="Kurt" last="Wüthrich">Kurt Wüthrich</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="eISSN">1089-8638</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electrophoretic Mobility Shift Assay</term>
<term>Models, Molecular</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>RNA, Viral (metabolism)</term>
<term>RNA-Binding Proteins (chemistry)</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>SARS Virus (chemistry)</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN viral (métabolisme)</term>
<term>Conformation des protéines</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Protéines de liaison à l'ARN ()</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Protéines virales non structurales ()</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>Résonance magnétique nucléaire biomoléculaire</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
<term>Test de retard de migration électrophorétique</term>
<term>Virus du SRAS ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA-Binding Proteins</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Viral</term>
<term>RNA-Binding Proteins</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN viral</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines virales non structurales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrophoretic Mobility Shift Assay</term>
<term>Models, Molecular</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Liaison aux protéines</term>
<term>Modèles moléculaires</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines virales non structurales</term>
<term>Résonance magnétique nucléaire biomoléculaire</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
<term>Test de retard de migration électrophorétique</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nonstructural protein 3 of the severe acute respiratory syndrome (SARS) coronavirus includes a "SARS-unique domain" (SUD) consisting of three globular domains separated by short linker peptide segments. This work reports NMR structure determinations of the C-terminal domain (SUD-C) and a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-domain construct. Both SUD-N and SUD-NM are monomeric and globular in solution; in SUD-NM, there is high mobility in the two-residue interdomain linking sequence, with no preferred relative orientation of the two domains. SUD-C adopts a frataxin like fold and has structural similarity to DNA-binding domains of DNA-modifying enzymes. The structures of both SUD-M (previously determined) and SUD-C (from the present study) are maintained in SUD-MC, where the two domains are flexibly linked. Gel-shift experiments showed that both SUD-C and SUD-MC bind to single-stranded RNA and recognize purine bases more strongly than pyrimidine bases, whereby SUD-MC binds to a more restricted set of purine-containing RNA sequences than SUD-M. NMR chemical shift perturbation experiments with observations of (15)N-labeled proteins further resulted in delineation of RNA binding sites (i.e., in SUD-M, a positively charged surface area with a pronounced cavity, and in SUD-C, several residues of an anti-parallel beta-sheet). Overall, the present data provide evidence for molecular mechanisms involving the concerted actions of SUD-M and SUD-C, which result in specific RNA binding that might be unique to the SUD and, thus, to the SARS coronavirus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20493876</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1089-8638</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>400</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding.</ArticleTitle>
<Pagination>
<MedlinePgn>724-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmb.2010.05.027</ELocationID>
<Abstract>
<AbstractText>Nonstructural protein 3 of the severe acute respiratory syndrome (SARS) coronavirus includes a "SARS-unique domain" (SUD) consisting of three globular domains separated by short linker peptide segments. This work reports NMR structure determinations of the C-terminal domain (SUD-C) and a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-domain construct. Both SUD-N and SUD-NM are monomeric and globular in solution; in SUD-NM, there is high mobility in the two-residue interdomain linking sequence, with no preferred relative orientation of the two domains. SUD-C adopts a frataxin like fold and has structural similarity to DNA-binding domains of DNA-modifying enzymes. The structures of both SUD-M (previously determined) and SUD-C (from the present study) are maintained in SUD-MC, where the two domains are flexibly linked. Gel-shift experiments showed that both SUD-C and SUD-MC bind to single-stranded RNA and recognize purine bases more strongly than pyrimidine bases, whereby SUD-MC binds to a more restricted set of purine-containing RNA sequences than SUD-M. NMR chemical shift perturbation experiments with observations of (15)N-labeled proteins further resulted in delineation of RNA binding sites (i.e., in SUD-M, a positively charged surface area with a pronounced cavity, and in SUD-C, several residues of an anti-parallel beta-sheet). Overall, the present data provide evidence for molecular mechanisms involving the concerted actions of SUD-M and SUD-C, which result in specific RNA binding that might be unique to the SUD and, thus, to the SARS coronavirus.</AbstractText>
<CopyrightInformation>Copyright (c) 2010 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Margaret A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chatterjee</LastName>
<ForeName>Amarnath</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Neuman</LastName>
<ForeName>Benjamin W</ForeName>
<Initials>BW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wüthrich</LastName>
<ForeName>Kurt</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2KAF</AccessionNumber>
<AccessionNumber>2KQV</AccessionNumber>
<AccessionNumber>2KQW</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>N01 AI040058-700</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 GM074898</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 GM074898-01</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54-GM074898</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D024202" MajorTopicYN="N">Electrophoretic Mobility Shift Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019906" MajorTopicYN="N">Nuclear Magnetic Resonance, Biomolecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20493876</ArticleId>
<ArticleId IdType="pii">S0022-2836(10)00506-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2010.05.027</ArticleId>
<ArticleId IdType="pmc">PMC2958096</ArticleId>
<ArticleId IdType="mid">NIHMS216519</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Magn Reson. 2000 Apr;143(2):423-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10729271</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1997 Oct 17;273(1):283-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367762</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Dec;83(24):12998-3008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19828617</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):51-5, 29-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744573</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 2006;66:193-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877062</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2007 May 1;67(2):501-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266124</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331731</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2006 Apr;117(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503362</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2005 Nov;13(11):1665-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16271890</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Jun;82(11):5279-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18367524</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2009 Jan 9;385(1):212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983849</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Jan 24;415(6870):396-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807546</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 2008 Sep;42(1):23-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18709333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 2002 May;23(1):23-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12061715</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2000 Mar 15;8(3):231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W284-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912299</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1996 Sep;8(2):136-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914272</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Structure. 2004 Nov;12(11):2037-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15530368</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viral Immunol. 2003;16(4):461-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14733734</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2004 Nov;4(11):663-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522678</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):257-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592240</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2008 Oct;89(Pt 10):2359-2376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796704</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Feb;83(4):1823-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052085</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Aug;78(15):7863-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Dec 28;364(4):877-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17976532</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8932-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908679</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 1995 Nov;20(11):478-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8578593</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Chem Biol. 2009 Mar;5(3):174-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19182782</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 2008 Jul;41(3):127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18512031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1993 Dec 21;32(50):13818-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8268157</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):12049-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728234</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1993 Sep 5;233(1):123-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8377180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Dec;82(24):12392-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 2002 Nov;24(3):171-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12522306</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043707</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2009 May;5(5):e1000428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19436709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2002 May 24;319(1):209-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051947</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2002 Mar;43(5):1079-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11918797</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chatterjee, Amarnath" sort="Chatterjee, Amarnath" uniqKey="Chatterjee A" first="Amarnath" last="Chatterjee">Amarnath Chatterjee</name>
<name sortKey="Neuman, Benjamin W" sort="Neuman, Benjamin W" uniqKey="Neuman B" first="Benjamin W" last="Neuman">Benjamin W. Neuman</name>
<name sortKey="Wuthrich, Kurt" sort="Wuthrich, Kurt" uniqKey="Wuthrich K" first="Kurt" last="Wüthrich">Kurt Wüthrich</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Johnson, Margaret A" sort="Johnson, Margaret A" uniqKey="Johnson M" first="Margaret A" last="Johnson">Margaret A. Johnson</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001601 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001601 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:20493876
   |texte=   SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:20493876" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021