Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Host and viral ecology determine bat rabies seasonality and maintenance.

Identifieur interne : 001493 ( PubMed/Checkpoint ); précédent : 001492; suivant : 001494

Host and viral ecology determine bat rabies seasonality and maintenance.

Auteurs : Dylan B. George [États-Unis] ; Colleen T. Webb ; Matthew L. Farnsworth ; Thomas J. O'Shea ; Richard A. Bowen ; David L. Smith ; Thomas R. Stanley ; Laura E. Ellison ; Charles E. Rupprecht

Source :

RBID : pubmed:21646516

Descripteurs français

English descriptors

Abstract

Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.

DOI: 10.1073/pnas.1010875108
PubMed: 21646516


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21646516

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Host and viral ecology determine bat rabies seasonality and maintenance.</title>
<author>
<name sortKey="George, Dylan B" sort="George, Dylan B" uniqKey="George D" first="Dylan B" last="George">Dylan B. George</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins, CO 80523, USA. dylangeorge@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins, CO 80523</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Webb, Colleen T" sort="Webb, Colleen T" uniqKey="Webb C" first="Colleen T" last="Webb">Colleen T. Webb</name>
</author>
<author>
<name sortKey="Farnsworth, Matthew L" sort="Farnsworth, Matthew L" uniqKey="Farnsworth M" first="Matthew L" last="Farnsworth">Matthew L. Farnsworth</name>
</author>
<author>
<name sortKey="O Shea, Thomas J" sort="O Shea, Thomas J" uniqKey="O Shea T" first="Thomas J" last="O'Shea">Thomas J. O'Shea</name>
</author>
<author>
<name sortKey="Bowen, Richard A" sort="Bowen, Richard A" uniqKey="Bowen R" first="Richard A" last="Bowen">Richard A. Bowen</name>
</author>
<author>
<name sortKey="Smith, David L" sort="Smith, David L" uniqKey="Smith D" first="David L" last="Smith">David L. Smith</name>
</author>
<author>
<name sortKey="Stanley, Thomas R" sort="Stanley, Thomas R" uniqKey="Stanley T" first="Thomas R" last="Stanley">Thomas R. Stanley</name>
</author>
<author>
<name sortKey="Ellison, Laura E" sort="Ellison, Laura E" uniqKey="Ellison L" first="Laura E" last="Ellison">Laura E. Ellison</name>
</author>
<author>
<name sortKey="Rupprecht, Charles E" sort="Rupprecht, Charles E" uniqKey="Rupprecht C" first="Charles E" last="Rupprecht">Charles E. Rupprecht</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21646516</idno>
<idno type="pmid">21646516</idno>
<idno type="doi">10.1073/pnas.1010875108</idno>
<idno type="wicri:Area/PubMed/Corpus">001504</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001504</idno>
<idno type="wicri:Area/PubMed/Curation">001504</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001504</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001493</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001493</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Host and viral ecology determine bat rabies seasonality and maintenance.</title>
<author>
<name sortKey="George, Dylan B" sort="George, Dylan B" uniqKey="George D" first="Dylan B" last="George">Dylan B. George</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, Colorado State University, Fort Collins, CO 80523, USA. dylangeorge@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Colorado State University, Fort Collins, CO 80523</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Webb, Colleen T" sort="Webb, Colleen T" uniqKey="Webb C" first="Colleen T" last="Webb">Colleen T. Webb</name>
</author>
<author>
<name sortKey="Farnsworth, Matthew L" sort="Farnsworth, Matthew L" uniqKey="Farnsworth M" first="Matthew L" last="Farnsworth">Matthew L. Farnsworth</name>
</author>
<author>
<name sortKey="O Shea, Thomas J" sort="O Shea, Thomas J" uniqKey="O Shea T" first="Thomas J" last="O'Shea">Thomas J. O'Shea</name>
</author>
<author>
<name sortKey="Bowen, Richard A" sort="Bowen, Richard A" uniqKey="Bowen R" first="Richard A" last="Bowen">Richard A. Bowen</name>
</author>
<author>
<name sortKey="Smith, David L" sort="Smith, David L" uniqKey="Smith D" first="David L" last="Smith">David L. Smith</name>
</author>
<author>
<name sortKey="Stanley, Thomas R" sort="Stanley, Thomas R" uniqKey="Stanley T" first="Thomas R" last="Stanley">Thomas R. Stanley</name>
</author>
<author>
<name sortKey="Ellison, Laura E" sort="Ellison, Laura E" uniqKey="Ellison L" first="Laura E" last="Ellison">Laura E. Ellison</name>
</author>
<author>
<name sortKey="Rupprecht, Charles E" sort="Rupprecht, Charles E" uniqKey="Rupprecht C" first="Charles E" last="Rupprecht">Charles E. Rupprecht</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chiroptera (virology)</term>
<term>Colorado (epidemiology)</term>
<term>Disease Vectors</term>
<term>Ecology</term>
<term>Foxes (virology)</term>
<term>Models, Theoretical</term>
<term>Rabies (epidemiology)</term>
<term>Rabies (virology)</term>
<term>Raccoons (virology)</term>
<term>Zoonoses (epidemiology)</term>
<term>Zoonoses (transmission)</term>
<term>Zoonoses (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Chiroptera (virologie)</term>
<term>Colorado (épidémiologie)</term>
<term>Modèles théoriques</term>
<term>Rage (maladie) (virologie)</term>
<term>Rage (maladie) (épidémiologie)</term>
<term>Ratons laveurs (virologie)</term>
<term>Renards (virologie)</term>
<term>Vecteurs de maladie</term>
<term>Zoonoses (transmission)</term>
<term>Zoonoses (virologie)</term>
<term>Zoonoses (épidémiologie)</term>
<term>Écologie</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Colorado</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Rabies</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Chiroptera</term>
<term>Rage (maladie)</term>
<term>Ratons laveurs</term>
<term>Renards</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Chiroptera</term>
<term>Foxes</term>
<term>Rabies</term>
<term>Raccoons</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Colorado</term>
<term>Rage (maladie)</term>
<term>Zoonoses</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Vectors</term>
<term>Ecology</term>
<term>Models, Theoretical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Modèles théoriques</term>
<term>Vecteurs de maladie</term>
<term>Écologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21646516</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>25</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Host and viral ecology determine bat rabies seasonality and maintenance.</ArticleTitle>
<Pagination>
<MedlinePgn>10208-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1010875108</ELocationID>
<Abstract>
<AbstractText>Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>George</LastName>
<ForeName>Dylan B</ForeName>
<Initials>DB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Colorado State University, Fort Collins, CO 80523, USA. dylangeorge@gmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Webb</LastName>
<ForeName>Colleen T</ForeName>
<Initials>CT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Farnsworth</LastName>
<ForeName>Matthew L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>O'Shea</LastName>
<ForeName>Thomas J</ForeName>
<Initials>TJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bowen</LastName>
<ForeName>Richard A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>David L</ForeName>
<Initials>DL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stanley</LastName>
<ForeName>Thomas R</ForeName>
<Initials>TR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ellison</LastName>
<ForeName>Laura E</ForeName>
<Initials>LE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rupprecht</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002685" MajorTopicYN="N">Chiroptera</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003120" MajorTopicYN="N" Type="Geographic">Colorado</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004199" MajorTopicYN="N">Disease Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004463" MajorTopicYN="Y">Ecology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005589" MajorTopicYN="N">Foxes</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="Y">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011818" MajorTopicYN="N">Rabies</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011821" MajorTopicYN="N">Raccoons</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015047" MajorTopicYN="N">Zoonoses</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21646516</ArticleId>
<ArticleId IdType="pii">1010875108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1010875108</ArticleId>
<ArticleId IdType="pmc">PMC3121824</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Appl Ecol. 2008 Aug;45(4):1246-1257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22427710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2004 Dec 22;271(1557):2569-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15615682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2002 Jun;2(6):327-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12144896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prev Vet Med. 2005 Oct 12;71(3-4):225-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci Eng. 2008 Oct;5(4):729-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19278278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2008 Nov 7;255(1):69-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18761020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 2001 Dec;60(4):265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11878829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1960 Sep 30;112(4):595-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19867178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitology. 1995;111 Suppl:S33-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8632923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2007 Apr 7;245(3):498-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17184793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 1999 May-Jun;5(3):433-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10341181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vector Borne Zoonotic Dis. 2005 Winter;5(4):330-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16417429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Dec 4;326(5958):1362-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 1995 Oct-Dec;1(4):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8903179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1969 Feb 1;221(5179):421-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5784418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Vet Med Assoc. 2007 Aug 15;231(4):540-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1959 Nov-Dec;105:267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14440686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Vet Med Assoc. 2003 Mar 1;222(5):633-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12619845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Wildl Dis. 2004 Jul;40(3):403-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2007 Mar;17(2):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17489265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 1996 Apr;9(2):166-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8964034</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bowen, Richard A" sort="Bowen, Richard A" uniqKey="Bowen R" first="Richard A" last="Bowen">Richard A. Bowen</name>
<name sortKey="Ellison, Laura E" sort="Ellison, Laura E" uniqKey="Ellison L" first="Laura E" last="Ellison">Laura E. Ellison</name>
<name sortKey="Farnsworth, Matthew L" sort="Farnsworth, Matthew L" uniqKey="Farnsworth M" first="Matthew L" last="Farnsworth">Matthew L. Farnsworth</name>
<name sortKey="O Shea, Thomas J" sort="O Shea, Thomas J" uniqKey="O Shea T" first="Thomas J" last="O'Shea">Thomas J. O'Shea</name>
<name sortKey="Rupprecht, Charles E" sort="Rupprecht, Charles E" uniqKey="Rupprecht C" first="Charles E" last="Rupprecht">Charles E. Rupprecht</name>
<name sortKey="Smith, David L" sort="Smith, David L" uniqKey="Smith D" first="David L" last="Smith">David L. Smith</name>
<name sortKey="Stanley, Thomas R" sort="Stanley, Thomas R" uniqKey="Stanley T" first="Thomas R" last="Stanley">Thomas R. Stanley</name>
<name sortKey="Webb, Colleen T" sort="Webb, Colleen T" uniqKey="Webb C" first="Colleen T" last="Webb">Colleen T. Webb</name>
</noCountry>
<country name="États-Unis">
<region name="Colorado">
<name sortKey="George, Dylan B" sort="George, Dylan B" uniqKey="George D" first="Dylan B" last="George">Dylan B. George</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001493 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001493 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21646516
   |texte=   Host and viral ecology determine bat rabies seasonality and maintenance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21646516" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021