Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses.

Identifieur interne : 001254 ( PubMed/Checkpoint ); précédent : 001253; suivant : 001255

Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses.

Auteurs : Gerard Kian-Meng Goh ; A Keith Dunker ; Vladimir N. Uversky

Source :

RBID : pubmed:23097708

Abstract

Besides being a common threat to farm animals and poultry, coronavirus (CoV) was responsible for the human severe acute respiratory syndrome (SARS) epidemic in 2002-4. However, many aspects of CoV behavior, including modes of its transmission, are yet to be fully understood. We show that the amount and the peculiarities of distribution of the protein intrinsic disorder in the viral shell can be used for the efficient analysis of the behavior and transmission modes of CoV. The proposed model allows categorization of the various CoVs by the peculiarities of disorder distribution in their membrane (M) and nucleocapsid (N). This categorization enables quick identification of viruses with similar behaviors in transmission, regardless of genetic proximity. Based on this analysis, an empirical model for predicting the viral transmission behavior is developed. This model is able to explain some behavioral aspects of important coronaviruses that previously were not fully understood. The new predictor can be a useful tool for better epidemiological, clinical, and structural understanding of behavior of both newly emerging viruses and viruses that have been known for a long time. A potentially new vaccine strategy could involve searches for viral strains that are characterized by the evolutionary misfit between the peculiarities of the disorder distribution in their shells and their behavior.

DOI: 10.1155/2012/738590
PubMed: 23097708


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23097708

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses.</title>
<author>
<name sortKey="Goh, Gerard Kian Meng" sort="Goh, Gerard Kian Meng" uniqKey="Goh G" first="Gerard Kian-Meng" last="Goh">Gerard Kian-Meng Goh</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228.</nlm:affiliation>
<wicri:noCountry code="subField">Singapore 119228</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Dunker, A Keith" sort="Dunker, A Keith" uniqKey="Dunker A" first="A Keith" last="Dunker">A Keith Dunker</name>
</author>
<author>
<name sortKey="Uversky, Vladimir N" sort="Uversky, Vladimir N" uniqKey="Uversky V" first="Vladimir N" last="Uversky">Vladimir N. Uversky</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23097708</idno>
<idno type="pmid">23097708</idno>
<idno type="doi">10.1155/2012/738590</idno>
<idno type="wicri:Area/PubMed/Corpus">001292</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001292</idno>
<idno type="wicri:Area/PubMed/Curation">001292</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001292</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001254</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001254</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses.</title>
<author>
<name sortKey="Goh, Gerard Kian Meng" sort="Goh, Gerard Kian Meng" uniqKey="Goh G" first="Gerard Kian-Meng" last="Goh">Gerard Kian-Meng Goh</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228.</nlm:affiliation>
<wicri:noCountry code="subField">Singapore 119228</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Dunker, A Keith" sort="Dunker, A Keith" uniqKey="Dunker A" first="A Keith" last="Dunker">A Keith Dunker</name>
</author>
<author>
<name sortKey="Uversky, Vladimir N" sort="Uversky, Vladimir N" uniqKey="Uversky V" first="Vladimir N" last="Uversky">Vladimir N. Uversky</name>
</author>
</analytic>
<series>
<title level="j">Journal of pathogens</title>
<idno type="eISSN">2090-3065</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Besides being a common threat to farm animals and poultry, coronavirus (CoV) was responsible for the human severe acute respiratory syndrome (SARS) epidemic in 2002-4. However, many aspects of CoV behavior, including modes of its transmission, are yet to be fully understood. We show that the amount and the peculiarities of distribution of the protein intrinsic disorder in the viral shell can be used for the efficient analysis of the behavior and transmission modes of CoV. The proposed model allows categorization of the various CoVs by the peculiarities of disorder distribution in their membrane (M) and nucleocapsid (N). This categorization enables quick identification of viruses with similar behaviors in transmission, regardless of genetic proximity. Based on this analysis, an empirical model for predicting the viral transmission behavior is developed. This model is able to explain some behavioral aspects of important coronaviruses that previously were not fully understood. The new predictor can be a useful tool for better epidemiological, clinical, and structural understanding of behavior of both newly emerging viruses and viruses that have been known for a long time. A potentially new vaccine strategy could involve searches for viral strains that are characterized by the evolutionary misfit between the peculiarities of the disorder distribution in their shells and their behavior.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23097708</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2090-3065</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2012</Volume>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>Journal of pathogens</Title>
<ISOAbbreviation>J Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses.</ArticleTitle>
<Pagination>
<MedlinePgn>738590</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1155/2012/738590</ELocationID>
<Abstract>
<AbstractText>Besides being a common threat to farm animals and poultry, coronavirus (CoV) was responsible for the human severe acute respiratory syndrome (SARS) epidemic in 2002-4. However, many aspects of CoV behavior, including modes of its transmission, are yet to be fully understood. We show that the amount and the peculiarities of distribution of the protein intrinsic disorder in the viral shell can be used for the efficient analysis of the behavior and transmission modes of CoV. The proposed model allows categorization of the various CoVs by the peculiarities of disorder distribution in their membrane (M) and nucleocapsid (N). This categorization enables quick identification of viruses with similar behaviors in transmission, regardless of genetic proximity. Based on this analysis, an empirical model for predicting the viral transmission behavior is developed. This model is able to explain some behavioral aspects of important coronaviruses that previously were not fully understood. The new predictor can be a useful tool for better epidemiological, clinical, and structural understanding of behavior of both newly emerging viruses and viruses that have been known for a long time. A potentially new vaccine strategy could involve searches for viral strains that are characterized by the evolutionary misfit between the peculiarities of the disorder distribution in their shells and their behavior.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Goh</LastName>
<ForeName>Gerard Kian-Meng</ForeName>
<Initials>GK</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dunker</LastName>
<ForeName>A Keith</ForeName>
<Initials>AK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Uversky</LastName>
<ForeName>Vladimir N</ForeName>
<Initials>VN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Egypt</Country>
<MedlineTA>J Pathog</MedlineTA>
<NlmUniqueID>101571433</NlmUniqueID>
<ISSNLinking>2090-3057</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>09</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23097708</ArticleId>
<ArticleId IdType="doi">10.1155/2012/738590</ArticleId>
<ArticleId IdType="pmc">PMC3477565</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17578581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2004 Apr 22;350(17):1731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15102999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 May;12(5):775-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16704837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Pept Lett. 2010 Aug;17(8):932-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20450483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 23;281(25):17134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Oct 22;293(2):321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 May 15;38(10):1420-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15156481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 2001;:89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11262981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2009 Aug;19(8):929-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19597536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2004 Oct;132(5):781-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15473139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph Model. 2001;19(1):26-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11381529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2000 Nov 15;41(3):415-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11025552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 May;12(4):403-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21453435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2001 Jan 1;42(1):38-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11093259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jun;1804(6):1231-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20117254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Inform Ser Workshop Genome Inform. 1999;10:41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11072341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Sci Tech. 2000 Aug;19(2):493-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10935276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2001 Jul;81(1):586-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9 Suppl 2:S4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18831795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2008;5:126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18947403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(13):6612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16775348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 Jun;111(11):1605-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Res. 2005;6:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Mol Biol Educ. 2006 Jul;34(4):255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21638687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):210-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Oct 29;35(43):13709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8901511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2010 Jun;48(2):131-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20362494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pac Symp Biocomput. 1998;:437-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9697202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2003 Sep 1;52(4):573-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12910457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2007 Mar 1;92(5):1439-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2003;53 Suppl 6:566-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14579347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2009;6:69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19493338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681372</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Dunker, A Keith" sort="Dunker, A Keith" uniqKey="Dunker A" first="A Keith" last="Dunker">A Keith Dunker</name>
<name sortKey="Goh, Gerard Kian Meng" sort="Goh, Gerard Kian Meng" uniqKey="Goh G" first="Gerard Kian-Meng" last="Goh">Gerard Kian-Meng Goh</name>
<name sortKey="Uversky, Vladimir N" sort="Uversky, Vladimir N" uniqKey="Uversky V" first="Vladimir N" last="Uversky">Vladimir N. Uversky</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001254 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001254 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23097708
   |texte=   Understanding Viral Transmission Behavior via Protein Intrinsic Disorder Prediction: Coronaviruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23097708" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021