Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics.

Identifieur interne : 000D84 ( PubMed/Checkpoint ); précédent : 000D83; suivant : 000D85

NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics.

Auteurs : Garvita Gupta [Singapour] ; Liangzhong Lim [Singapour] ; Jianxing Song [Singapour]

Source :

RBID : pubmed:26258523

Descripteurs français

English descriptors

Abstract

Dengue genome encodes a two component protease complex (NS2B-NS3pro) essential for the viral maturation/infectivity, thus representing a key drug target. Previously, due to its "complete insolubility", the isolated NS3pro could not be experimentally studied and it remains elusive what structure it adopts without NS2B and why NS2B is indispensable. Here as facilitated by our previous discovery, the isolated NS3pro has been surprisingly deciphered by NMR to be the first intrinsically-disordered chymotrypsin-like fold, which exists in a loosely-packed state with non-native long-range interactions as revealed by paramagnetic relaxation enhancement (PRE). The disordered NS3pro appears to be needed for binding a human host factor to trigger the membrane remodeling. Moreover, we have in vitro refolded the NS3pro in complex with either NS2B (48-100) or the full-length NS2B (1-130) anchored into the LMPC micelle, and the two complexes have similar activities but different dynamics. We also performed molecular dynamics (MD) simulations and the results revealed that NS2B shows the highest structural fluctuations in the complex, thus providing the dynamic basis for the observation on its conformational exchange between open and closed states. Remarkably, the NS2B cofactor plays a central role in maintaining the correlated motion network required for the catalysis as we previously decoded for the SARS 3CL protease. Indeed, a truncated NS2B (48-100;Δ77-84) with the flexible loop deleted is able to trap the NS2B-NS3pro complex in a highly dynamic and catalytically-impotent state. Taken together, our study implies potential strategies to perturb the NS2B-NS3pro interface for design of inhibitors for treating dengue infection.

DOI: 10.1371/journal.pone.0134823
PubMed: 26258523


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26258523

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics.</title>
<author>
<name sortKey="Gupta, Garvita" sort="Gupta, Garvita" uniqKey="Gupta G" first="Garvita" last="Gupta">Garvita Gupta</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lim, Liangzhong" sort="Lim, Liangzhong" uniqKey="Lim L" first="Liangzhong" last="Lim">Liangzhong Lim</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Song, Jianxing" sort="Song, Jianxing" uniqKey="Song J" first="Jianxing" last="Song">Jianxing Song</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26258523</idno>
<idno type="pmid">26258523</idno>
<idno type="doi">10.1371/journal.pone.0134823</idno>
<idno type="wicri:Area/PubMed/Corpus">000D87</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D87</idno>
<idno type="wicri:Area/PubMed/Curation">000D87</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000D87</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D84</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000D84</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics.</title>
<author>
<name sortKey="Gupta, Garvita" sort="Gupta, Garvita" uniqKey="Gupta G" first="Garvita" last="Gupta">Garvita Gupta</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Lim, Liangzhong" sort="Lim, Liangzhong" uniqKey="Lim L" first="Liangzhong" last="Lim">Liangzhong Lim</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Song, Jianxing" sort="Song, Jianxing" uniqKey="Song J" first="Jianxing" last="Song">Jianxing Song</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chymotrypsin (chemistry)</term>
<term>Circular Dichroism</term>
<term>Dengue (virology)</term>
<term>Dengue Virus (chemistry)</term>
<term>Endopeptidases (chemistry)</term>
<term>Escherichia coli (metabolism)</term>
<term>Genome, Viral</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Micelles</term>
<term>Molecular Dynamics Simulation</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Binding</term>
<term>Protein Folding</term>
<term>Protein Structure, Secondary</term>
<term>RNA Helicases (chemistry)</term>
<term>Serine Endopeptidases (chemistry)</term>
<term>Spin Labels</term>
<term>Structure-Activity Relationship</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chymotrypsine ()</term>
<term>Dengue (virologie)</term>
<term>Dichroïsme circulaire</term>
<term>Endopeptidases ()</term>
<term>Escherichia coli (métabolisme)</term>
<term>Génome viral</term>
<term>Liaison aux protéines</term>
<term>Marqueurs de spin</term>
<term>Micelles</term>
<term>Mutagenèse dirigée</term>
<term>Pliage des protéines</term>
<term>Protéines virales non structurales ()</term>
<term>RNA helicases ()</term>
<term>Relation structure-activité</term>
<term>Serine endopeptidases ()</term>
<term>Simulation de dynamique moléculaire</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure secondaire des protéines</term>
<term>Virus de la dengue ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chymotrypsin</term>
<term>Endopeptidases</term>
<term>RNA Helicases</term>
<term>Serine Endopeptidases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Dengue Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Dengue</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Dengue</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Circular Dichroism</term>
<term>Genome, Viral</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Micelles</term>
<term>Molecular Dynamics Simulation</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Binding</term>
<term>Protein Folding</term>
<term>Protein Structure, Secondary</term>
<term>Spin Labels</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chymotrypsine</term>
<term>Dichroïsme circulaire</term>
<term>Endopeptidases</term>
<term>Génome viral</term>
<term>Liaison aux protéines</term>
<term>Marqueurs de spin</term>
<term>Micelles</term>
<term>Mutagenèse dirigée</term>
<term>Pliage des protéines</term>
<term>Protéines virales non structurales</term>
<term>RNA helicases</term>
<term>Relation structure-activité</term>
<term>Serine endopeptidases</term>
<term>Simulation de dynamique moléculaire</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure secondaire des protéines</term>
<term>Virus de la dengue</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dengue genome encodes a two component protease complex (NS2B-NS3pro) essential for the viral maturation/infectivity, thus representing a key drug target. Previously, due to its "complete insolubility", the isolated NS3pro could not be experimentally studied and it remains elusive what structure it adopts without NS2B and why NS2B is indispensable. Here as facilitated by our previous discovery, the isolated NS3pro has been surprisingly deciphered by NMR to be the first intrinsically-disordered chymotrypsin-like fold, which exists in a loosely-packed state with non-native long-range interactions as revealed by paramagnetic relaxation enhancement (PRE). The disordered NS3pro appears to be needed for binding a human host factor to trigger the membrane remodeling. Moreover, we have in vitro refolded the NS3pro in complex with either NS2B (48-100) or the full-length NS2B (1-130) anchored into the LMPC micelle, and the two complexes have similar activities but different dynamics. We also performed molecular dynamics (MD) simulations and the results revealed that NS2B shows the highest structural fluctuations in the complex, thus providing the dynamic basis for the observation on its conformational exchange between open and closed states. Remarkably, the NS2B cofactor plays a central role in maintaining the correlated motion network required for the catalysis as we previously decoded for the SARS 3CL protease. Indeed, a truncated NS2B (48-100;Δ77-84) with the flexible loop deleted is able to trap the NS2B-NS3pro complex in a highly dynamic and catalytically-impotent state. Taken together, our study implies potential strategies to perturb the NS2B-NS3pro interface for design of inhibitors for treating dengue infection. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26258523</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics.</ArticleTitle>
<Pagination>
<MedlinePgn>e0134823</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0134823</ELocationID>
<Abstract>
<AbstractText>Dengue genome encodes a two component protease complex (NS2B-NS3pro) essential for the viral maturation/infectivity, thus representing a key drug target. Previously, due to its "complete insolubility", the isolated NS3pro could not be experimentally studied and it remains elusive what structure it adopts without NS2B and why NS2B is indispensable. Here as facilitated by our previous discovery, the isolated NS3pro has been surprisingly deciphered by NMR to be the first intrinsically-disordered chymotrypsin-like fold, which exists in a loosely-packed state with non-native long-range interactions as revealed by paramagnetic relaxation enhancement (PRE). The disordered NS3pro appears to be needed for binding a human host factor to trigger the membrane remodeling. Moreover, we have in vitro refolded the NS3pro in complex with either NS2B (48-100) or the full-length NS2B (1-130) anchored into the LMPC micelle, and the two complexes have similar activities but different dynamics. We also performed molecular dynamics (MD) simulations and the results revealed that NS2B shows the highest structural fluctuations in the complex, thus providing the dynamic basis for the observation on its conformational exchange between open and closed states. Remarkably, the NS2B cofactor plays a central role in maintaining the correlated motion network required for the catalysis as we previously decoded for the SARS 3CL protease. Indeed, a truncated NS2B (48-100;Δ77-84) with the flexible loop deleted is able to trap the NS2B-NS3pro complex in a highly dynamic and catalytically-impotent state. Taken together, our study implies potential strategies to perturb the NS2B-NS3pro interface for design of inhibitors for treating dengue infection. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gupta</LastName>
<ForeName>Garvita</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lim</LastName>
<ForeName>Liangzhong</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Jianxing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008823">Micelles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C080102">NS2B protein, flavivirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C060028">NS3 protein, flavivirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013113">Spin Labels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010450">Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.1</RegistryNumber>
<NameOfSubstance UI="D002918">Chymotrypsin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D020365">RNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002918" MajorTopicYN="N">Chymotrypsin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003715" MajorTopicYN="N">Dengue</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003716" MajorTopicYN="N">Dengue Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010450" MajorTopicYN="N">Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008823" MajorTopicYN="N">Micelles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020365" MajorTopicYN="N">RNA Helicases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013113" MajorTopicYN="N">Spin Labels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26258523</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0134823</ArticleId>
<ArticleId IdType="pii">PONE-D-15-21076</ArticleId>
<ArticleId IdType="pmc">PMC4530887</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Drug Discov. 2007 Dec;6(12):1001-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18049474</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(6):e38202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22675522</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2014 Jun 27;588(14):2206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24859037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Microbiol. 2008 Aug;11(4):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18644250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23):24765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2006 Dec 1;91(11):4201-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980357</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Apr;13(4):372-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16532006</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>F1000Res. 2013 Oct 21;2:221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25254094</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1994 May 17;33(19):5984-6003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7514039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Theory Comput. 2009 Sep 8;5(9):2486-2502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20161451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ACS Chem Biol. 2013 Dec 20;8(12):2744-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24164286</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2004 Aug;104(8):3607-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15303830</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2011 Feb;7(2):e1001084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21390281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 2003 Feb;28(2):81-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12575995</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2003 Dec;24(16):1999-2012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14531054</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2010 May 11;49(18):3887-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377183</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Theory Comput. 2008 Mar;4(3):435-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26620784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>F1000Res. 2013 Mar 22;2:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24555050</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Microbiol Rev. 1990 Oct;3(4):376-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2224837</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1994 Sep;4(5):603-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911360</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jan;1848(1 Pt A):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25306968</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2013 May 3;288(18):12891-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23511634</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Oct 25;440(3):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24070610</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2012 Nov;96(2):115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22995600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2005 Apr 22;348(1):205-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15808864</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Dec;8(12 Suppl):S7-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21079655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Jul 18;9(7):e101941</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25036652</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2012;895:127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22760317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855599</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2011 Nov 30;133(47):19205-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22007671</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15738986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Apr 25;496(7446):504-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23563266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Microbiol. 2010;64:241-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20825348</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FASEB J. 2010 May;24(5):1419-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20008544</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2014 Mar;281(6):1517-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24472363</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2008 Feb;18(1):60-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18160276</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2008 May;6(5):363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414501</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Negl Trop Dis. 2010 Nov 16;4(11):e890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21103381</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2011 Jul 11;29(7):553-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21747363</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Jan;55(1):229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937790</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2009 Mar 18;583(6):953-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19233178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25503365</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2008 Nov 15;95(10):4803-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599634</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Jan;86(1):438-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22031935</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 1999 Feb;6(2):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10048923</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Jan;83(2):1060-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971276</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Aug 21;8(8):e72402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23991109</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2002 Dec;102(12):4609-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12475203</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 2002 Oct;27(10):527-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368089</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(6):e39261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22720086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2014 Jul 9;114(13):6589-631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24773235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1995 Nov;4(11):2411-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8563639</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2012 Mar 20;51(11):2224-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22360139</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Top Curr Chem. 2013;337:123-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23571857</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Singapour</li>
</country>
<orgName>
<li>Université nationale de Singapour</li>
</orgName>
</list>
<tree>
<country name="Singapour">
<noRegion>
<name sortKey="Gupta, Garvita" sort="Gupta, Garvita" uniqKey="Gupta G" first="Garvita" last="Gupta">Garvita Gupta</name>
</noRegion>
<name sortKey="Lim, Liangzhong" sort="Lim, Liangzhong" uniqKey="Lim L" first="Liangzhong" last="Lim">Liangzhong Lim</name>
<name sortKey="Song, Jianxing" sort="Song, Jianxing" uniqKey="Song J" first="Jianxing" last="Song">Jianxing Song</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D84 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000D84 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:26258523
   |texte=   NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:26258523" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021