Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients

Identifieur interne : 001595 ( Pmc/Corpus ); précédent : 001594; suivant : 001596

Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients

Auteurs : Say Li Kong ; Paul Chui ; Bing Lim ; Manuel Salto-Tellez

Source :

RBID : PMC:7114434

Abstract

Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis; some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, IGF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TAC1. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung.


Url:
DOI: 10.1016/j.virusres.2009.07.014
PubMed: 19635508
PubMed Central: 7114434

Links to Exploration step

PMC:7114434

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients</title>
<author>
<name sortKey="Kong, Say Li" sort="Kong, Say Li" uniqKey="Kong S" first="Say Li" last="Kong">Say Li Kong</name>
<affiliation>
<nlm:aff id="aff1">Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chui, Paul" sort="Chui, Paul" uniqKey="Chui P" first="Paul" last="Chui">Paul Chui</name>
<affiliation>
<nlm:aff id="aff2">Health Sciences Authority, Centre for Forensic Medicine, 11 Outram Road, Singapore 169078, Singapore</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lim, Bing" sort="Lim, Bing" uniqKey="Lim B" first="Bing" last="Lim">Bing Lim</name>
<affiliation>
<nlm:aff id="aff1">Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Harvard Institute of Medicine, 77 Ave Louis Pasteur, Boston, MA 02115, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salto Tellez, Manuel" sort="Salto Tellez, Manuel" uniqKey="Salto Tellez M" first="Manuel" last="Salto-Tellez">Manuel Salto-Tellez</name>
<affiliation>
<nlm:aff id="aff4">National University Health System and National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19635508</idno>
<idno type="pmc">7114434</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114434</idno>
<idno type="RBID">PMC:7114434</idno>
<idno type="doi">10.1016/j.virusres.2009.07.014</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">001595</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001595</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients</title>
<author>
<name sortKey="Kong, Say Li" sort="Kong, Say Li" uniqKey="Kong S" first="Say Li" last="Kong">Say Li Kong</name>
<affiliation>
<nlm:aff id="aff1">Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chui, Paul" sort="Chui, Paul" uniqKey="Chui P" first="Paul" last="Chui">Paul Chui</name>
<affiliation>
<nlm:aff id="aff2">Health Sciences Authority, Centre for Forensic Medicine, 11 Outram Road, Singapore 169078, Singapore</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lim, Bing" sort="Lim, Bing" uniqKey="Lim B" first="Bing" last="Lim">Bing Lim</name>
<affiliation>
<nlm:aff id="aff1">Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Harvard Institute of Medicine, 77 Ave Louis Pasteur, Boston, MA 02115, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salto Tellez, Manuel" sort="Salto Tellez, Manuel" uniqKey="Salto Tellez M" first="Manuel" last="Salto-Tellez">Manuel Salto-Tellez</name>
<affiliation>
<nlm:aff id="aff4">National University Health System and National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Virus Research</title>
<idno type="ISSN">0168-1702</idno>
<idno type="eISSN">1872-7492</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis; some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, IGF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TAC1. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Aichele, D" uniqKey="Aichele D">D. Aichele</name>
</author>
<author>
<name sortKey="Schnare, M" uniqKey="Schnare M">M. Schnare</name>
</author>
<author>
<name sortKey="Saake, M" uniqKey="Saake M">M. Saake</name>
</author>
<author>
<name sortKey="Rollinghoff, M" uniqKey="Rollinghoff M">M. Rollinghoff</name>
</author>
<author>
<name sortKey="Gessner, A" uniqKey="Gessner A">A. Gessner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Armbrust, T" uniqKey="Armbrust T">T. Armbrust</name>
</author>
<author>
<name sortKey="Nordmann, B" uniqKey="Nordmann B">B. Nordmann</name>
</author>
<author>
<name sortKey="Kreibig, M" uniqKey="Kreibig M">M. Kreibig</name>
</author>
<author>
<name sortKey="Ramadori, G" uniqKey="Ramadori G">G. Ramadori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Asano, S" uniqKey="Asano S">S. Asano</name>
</author>
<author>
<name sortKey="Kida, K" uniqKey="Kida K">K. Kida</name>
</author>
<author>
<name sortKey="Koyama, T" uniqKey="Koyama T">T. Koyama</name>
</author>
<author>
<name sortKey="Wada, H" uniqKey="Wada H">H. Wada</name>
</author>
<author>
<name sortKey="Izawa, Y" uniqKey="Izawa Y">Y. Izawa</name>
</author>
<author>
<name sortKey="Hosoda, K" uniqKey="Hosoda K">K. Hosoda</name>
</author>
<author>
<name sortKey="Masuda, K" uniqKey="Masuda K">K. Masuda</name>
</author>
<author>
<name sortKey="Suzuki, Y" uniqKey="Suzuki Y">Y. Suzuki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauvois, B" uniqKey="Bauvois B">B. Bauvois</name>
</author>
<author>
<name sortKey="Dauzonne, D" uniqKey="Dauzonne D">D. Dauzonne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhatia, M" uniqKey="Bhatia M">M. Bhatia</name>
</author>
<author>
<name sortKey="Moochhala, S" uniqKey="Moochhala S">S. Moochhala</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calzada, M J" uniqKey="Calzada M">M.J. Calzada</name>
</author>
<author>
<name sortKey="Alvarez, M V" uniqKey="Alvarez M">M.V. Alvarez</name>
</author>
<author>
<name sortKey="Gonzalez Rodriguez, J" uniqKey="Gonzalez Rodriguez J">J. Gonzalez-Rodríguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, T" uniqKey="Cheng T">T. Cheng</name>
</author>
<author>
<name sortKey="Brzostek, S" uniqKey="Brzostek S">S. Brzostek</name>
</author>
<author>
<name sortKey="Ando, O" uniqKey="Ando O">O. Ando</name>
</author>
<author>
<name sortKey="Scoy, S V" uniqKey="Scoy S">S.V. Scoy</name>
</author>
<author>
<name sortKey="Kumar, K P" uniqKey="Kumar K">K.P. Kumar</name>
</author>
<author>
<name sortKey="Reich, N C" uniqKey="Reich N">N.C. Reich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daoui, S" uniqKey="Daoui S">S. Daoui</name>
</author>
<author>
<name sortKey="Ahnaou, A" uniqKey="Ahnaou A">A. Ahnaou</name>
</author>
<author>
<name sortKey="Naline, E" uniqKey="Naline E">E. Naline</name>
</author>
<author>
<name sortKey="Emonds Alt, X" uniqKey="Emonds Alt X">X. Emonds-Alt</name>
</author>
<author>
<name sortKey="Lagente, V" uniqKey="Lagente V">V. Lagente</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Lang, A" uniqKey="De Lang A">A. de Lang</name>
</author>
<author>
<name sortKey="Baas, T" uniqKey="Baas T">T. Baas</name>
</author>
<author>
<name sortKey="Teal, T" uniqKey="Teal T">T. Teal</name>
</author>
<author>
<name sortKey="Leijten, L M" uniqKey="Leijten L">L.M. Leijten</name>
</author>
<author>
<name sortKey="Rain, B" uniqKey="Rain B">B. Rain</name>
</author>
<author>
<name sortKey="Osterhaus, A D" uniqKey="Osterhaus A">A.D. Osterhaus</name>
</author>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B.L. Haagmans</name>
</author>
<author>
<name sortKey="Katze, M G" uniqKey="Katze M">M.G. Katze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deree, J" uniqKey="Deree J">J. Deree</name>
</author>
<author>
<name sortKey="Lall, R" uniqKey="Lall R">R. Lall</name>
</author>
<author>
<name sortKey="Melbostad, H" uniqKey="Melbostad H">H. Melbostad</name>
</author>
<author>
<name sortKey="Grant, M" uniqKey="Grant M">M. Grant</name>
</author>
<author>
<name sortKey="Hoyt, D B" uniqKey="Hoyt D">D.B. Hoyt</name>
</author>
<author>
<name sortKey="Coimbra, R" uniqKey="Coimbra R">R. Coimbra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="He, L" uniqKey="He L">L. He</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z. Huang</name>
</author>
<author>
<name sortKey="Che, X" uniqKey="Che X">X. Che</name>
</author>
<author>
<name sortKey="Hou, J" uniqKey="Hou J">J. Hou</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Shen, H" uniqKey="Shen H">H. Shen</name>
</author>
<author>
<name sortKey="Qiu, L" uniqKey="Qiu L">L. Qiu</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Geng, J" uniqKey="Geng J">J. Geng</name>
</author>
<author>
<name sortKey="Cai, J" uniqKey="Cai J">J. Cai</name>
</author>
<author>
<name sortKey="Han, H" uniqKey="Han H">H. Han</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Kang, W" uniqKey="Kang W">W. Kang</name>
</author>
<author>
<name sortKey="Weng, D" uniqKey="Weng D">D. Weng</name>
</author>
<author>
<name sortKey="Liang, P" uniqKey="Liang P">P. Liang</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eaton, J W" uniqKey="Eaton J">J.W. Eaton</name>
</author>
<author>
<name sortKey="Brandt, P" uniqKey="Brandt P">P. Brandt</name>
</author>
<author>
<name sortKey="Mahoney, J R" uniqKey="Mahoney J">J.R. Mahoney</name>
</author>
<author>
<name sortKey="Lee, J T" uniqKey="Lee J">J.T. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elsbach, P" uniqKey="Elsbach P">P. Elsbach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frosch, M" uniqKey="Frosch M">M. Frosch</name>
</author>
<author>
<name sortKey="Strey, A" uniqKey="Strey A">A. Strey</name>
</author>
<author>
<name sortKey="Vogl, T" uniqKey="Vogl T">T. Vogl</name>
</author>
<author>
<name sortKey="Wulffraat, N M" uniqKey="Wulffraat N">N.M. Wulffraat</name>
</author>
<author>
<name sortKey="Kuis, W" uniqKey="Kuis W">W. Kuis</name>
</author>
<author>
<name sortKey="Sunderkotter, C" uniqKey="Sunderkotter C">C. Sunderkötter</name>
</author>
<author>
<name sortKey="Harms, E" uniqKey="Harms E">E. Harms</name>
</author>
<author>
<name sortKey="Sorg, C" uniqKey="Sorg C">C. Sorg</name>
</author>
<author>
<name sortKey="Roth, J" uniqKey="Roth J">J. Roth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukuda, R" uniqKey="Fukuda R">R. Fukuda</name>
</author>
<author>
<name sortKey="Hirota, K" uniqKey="Hirota K">K. Hirota</name>
</author>
<author>
<name sortKey="Fan, F" uniqKey="Fan F">F. Fan</name>
</author>
<author>
<name sortKey="Jung, Y D" uniqKey="Jung Y">Y.D. Jung</name>
</author>
<author>
<name sortKey="Ellis, L M" uniqKey="Ellis L">L.M. Ellis</name>
</author>
<author>
<name sortKey="Semenza, G L" uniqKey="Semenza G">G.L. Semenza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glass, W G" uniqKey="Glass W">W.G. Glass</name>
</author>
<author>
<name sortKey="Subbarao, K" uniqKey="Subbarao K">K. Subbarao</name>
</author>
<author>
<name sortKey="Murphy, B" uniqKey="Murphy B">B. Murphy</name>
</author>
<author>
<name sortKey="Murphy, P M" uniqKey="Murphy P">P.M. Murphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ksiazek, T G" uniqKey="Ksiazek T">T.G. Ksiazek</name>
</author>
<author>
<name sortKey="Erdman, D" uniqKey="Erdman D">D. Erdman</name>
</author>
<author>
<name sortKey="Goldsmmoth, C S" uniqKey="Goldsmmoth C">C.S. Goldsmmoth</name>
</author>
<author>
<name sortKey="Zaki, S R" uniqKey="Zaki S">S.R. Zaki</name>
</author>
<author>
<name sortKey="Peret, T" uniqKey="Peret T">T. Peret</name>
</author>
<author>
<name sortKey="Emery, S" uniqKey="Emery S">S. Emery</name>
</author>
<author>
<name sortKey="Tong, S" uniqKey="Tong S">S. Tong</name>
</author>
<author>
<name sortKey="Urbani, C" uniqKey="Urbani C">C. Urbani</name>
</author>
<author>
<name sortKey="Comer, J A" uniqKey="Comer J">J.A. Comer</name>
</author>
<author>
<name sortKey="Lim, W" uniqKey="Lim W">W. Lim</name>
</author>
<author>
<name sortKey="Rollin, P E" uniqKey="Rollin P">P.E. Rollin</name>
</author>
<author>
<name sortKey="Dowell, S F" uniqKey="Dowell S">S.F. Dowell</name>
</author>
<author>
<name sortKey="Ling, A" uniqKey="Ling A">A. Ling</name>
</author>
<author>
<name sortKey="Humphrey, C D" uniqKey="Humphrey C">C.D. Humphrey</name>
</author>
<author>
<name sortKey="Shieh, W" uniqKey="Shieh W">W. Shieh</name>
</author>
<author>
<name sortKey="Guarner, J" uniqKey="Guarner J">J. Guarner</name>
</author>
<author>
<name sortKey="Paddock, C D" uniqKey="Paddock C">C.D. Paddock</name>
</author>
<author>
<name sortKey="Rota, P" uniqKey="Rota P">P. Rota</name>
</author>
<author>
<name sortKey="Fields, B" uniqKey="Fields B">B. Fields</name>
</author>
<author>
<name sortKey="Derisi, J" uniqKey="Derisi J">J. DeRisi</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Cox, N" uniqKey="Cox N">N. Cox</name>
</author>
<author>
<name sortKey="Hughes, J M" uniqKey="Hughes J">J.M. Hughes</name>
</author>
<author>
<name sortKey="Leduc, J W" uniqKey="Leduc J">J.W. LeDuc</name>
</author>
<author>
<name sortKey="Bellini, W J" uniqKey="Bellini W">W.J. Bellini</name>
</author>
<author>
<name sortKey="Anderson, L J" uniqKey="Anderson L">L.J. Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levy, D E" uniqKey="Levy D">D.E. Levy</name>
</author>
<author>
<name sortKey="Darnell, J E J" uniqKey="Darnell J">J.E.J. Darnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Moore, M J" uniqKey="Moore M">M.J. Moore</name>
</author>
<author>
<name sortKey="Vasilieva, N" uniqKey="Vasilieva N">N. Vasilieva</name>
</author>
<author>
<name sortKey="Sui, J" uniqKey="Sui J">J. Sui</name>
</author>
<author>
<name sortKey="Wong, S K" uniqKey="Wong S">S.K. Wong</name>
</author>
<author>
<name sortKey="Berne, M A" uniqKey="Berne M">M.A. Berne</name>
</author>
<author>
<name sortKey="Somasundaran, M" uniqKey="Somasundaran M">M. Somasundaran</name>
</author>
<author>
<name sortKey="Sullivan, J L" uniqKey="Sullivan J">J.L. Sullivan</name>
</author>
<author>
<name sortKey="Luzuriaga, K" uniqKey="Luzuriaga K">K. Luzuriaga</name>
</author>
<author>
<name sortKey="Greenough, T C" uniqKey="Greenough T">T.C. Greenough</name>
</author>
<author>
<name sortKey="Choe, H" uniqKey="Choe H">H. Choe</name>
</author>
<author>
<name sortKey="Farzan, M" uniqKey="Farzan M">M. Farzan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, P C" uniqKey="Ng P">P.C. Ng</name>
</author>
<author>
<name sortKey="Lam, C W K" uniqKey="Lam C">C.W.K. Lam</name>
</author>
<author>
<name sortKey="Li, A M" uniqKey="Li A">A.M. Li</name>
</author>
<author>
<name sortKey="Wong, C K" uniqKey="Wong C">C.K. Wong</name>
</author>
<author>
<name sortKey="Cheng, F W T" uniqKey="Cheng F">F.W.T. Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eill, L A J" uniqKey="O Eill L">L.A.J. O’Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Platt, N" uniqKey="Platt N">N. Platt</name>
</author>
<author>
<name sortKey="Suzuki, H" uniqKey="Suzuki H">H. Suzuki</name>
</author>
<author>
<name sortKey="Kurihara, Y" uniqKey="Kurihara Y">Y. Kurihara</name>
</author>
<author>
<name sortKey="Kodama, T" uniqKey="Kodama T">T. Kodama</name>
</author>
<author>
<name sortKey="Gordon, S" uniqKey="Gordon S">S. Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reghunathan, R" uniqKey="Reghunathan R">R. Reghunathan</name>
</author>
<author>
<name sortKey="Jayapal, M" uniqKey="Jayapal M">M. Jayapal</name>
</author>
<author>
<name sortKey="Hsu, L Y" uniqKey="Hsu L">L.Y. Hsu</name>
</author>
<author>
<name sortKey="Chng, H H" uniqKey="Chng H">H.H. Chng</name>
</author>
<author>
<name sortKey="Tai, D" uniqKey="Tai D">D. Tai</name>
</author>
<author>
<name sortKey="Leung, B P" uniqKey="Leung B">B.P. Leung</name>
</author>
<author>
<name sortKey="Melendez, A J" uniqKey="Melendez A">A.J. Melendez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sallenave, J M" uniqKey="Sallenave J">J.M. Sallenave</name>
</author>
<author>
<name sortKey="Donnelly, S C" uniqKey="Donnelly S">S.C. Donnelly</name>
</author>
<author>
<name sortKey="Grant, I S" uniqKey="Grant I">I.S. Grant</name>
</author>
<author>
<name sortKey="Robertson, C" uniqKey="Robertson C">C. Robertson</name>
</author>
<author>
<name sortKey="Gauldie, J" uniqKey="Gauldie J">J. Gauldie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salto Tellez, M" uniqKey="Salto Tellez M">M. Salto-Tellez</name>
</author>
<author>
<name sortKey="Tan, E" uniqKey="Tan E">E. Tan</name>
</author>
<author>
<name sortKey="Lim, B" uniqKey="Lim B">B. Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Samoszuk, M" uniqKey="Samoszuk M">M. Samoszuk</name>
</author>
<author>
<name sortKey="Kanakubo, E" uniqKey="Kanakubo E">E. Kanakubo</name>
</author>
<author>
<name sortKey="Chan, J K" uniqKey="Chan J">J.K. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Senaldi, G" uniqKey="Senaldi G">G. Senaldi</name>
</author>
<author>
<name sortKey="Stolina, M" uniqKey="Stolina M">M. Stolina</name>
</author>
<author>
<name sortKey="Guo, K" uniqKey="Guo K">K. Guo</name>
</author>
<author>
<name sortKey="Faggioni, R" uniqKey="Faggioni R">R. Faggioni</name>
</author>
<author>
<name sortKey="Mccabe, S" uniqKey="Mccabe S">S. McCabe</name>
</author>
<author>
<name sortKey="Kaufman, S A" uniqKey="Kaufman S">S.A. Kaufman</name>
</author>
<author>
<name sortKey="Van, G" uniqKey="Van G">G. Van</name>
</author>
<author>
<name sortKey="Xu, W" uniqKey="Xu W">W. Xu</name>
</author>
<author>
<name sortKey="Fletcher, F A" uniqKey="Fletcher F">F.A. Fletcher</name>
</author>
<author>
<name sortKey="Boone, T" uniqKey="Boone T">T. Boone</name>
</author>
<author>
<name sortKey="Chang, M" uniqKey="Chang M">M. Chang</name>
</author>
<author>
<name sortKey="Sarmiento, U" uniqKey="Sarmiento U">U. Sarmiento</name>
</author>
<author>
<name sortKey="Cattley, R C" uniqKey="Cattley R">R.C. Cattley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Springer, J" uniqKey="Springer J">J. Springer</name>
</author>
<author>
<name sortKey="Groneberg, D A" uniqKey="Groneberg D">D.A. Groneberg</name>
</author>
<author>
<name sortKey="Pregla, R" uniqKey="Pregla R">R. Pregla</name>
</author>
<author>
<name sortKey="Fischer, A" uniqKey="Fischer A">A. Fischer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanguri, P" uniqKey="Vanguri P">P. Vanguri</name>
</author>
<author>
<name sortKey="Farber, J M" uniqKey="Farber J">J.M. Farber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijgen, L" uniqKey="Vijgen L">L. Vijgen</name>
</author>
<author>
<name sortKey="Keyaerts, E" uniqKey="Keyaerts E">E. Keyaerts</name>
</author>
<author>
<name sortKey="Zlateva, K" uniqKey="Zlateva K">K. Zlateva</name>
</author>
<author>
<name sortKey="Van Ranst, M" uniqKey="Van Ranst M">M. Van Ranst</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Virus Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Virus Res</journal-id>
<journal-title-group>
<journal-title>Virus Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">0168-1702</issn>
<issn pub-type="epub">1872-7492</issn>
<publisher>
<publisher-name>Elsevier B.V.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">19635508</article-id>
<article-id pub-id-type="pmc">7114434</article-id>
<article-id pub-id-type="publisher-id">S0168-1702(09)00249-4</article-id>
<article-id pub-id-type="doi">10.1016/j.virusres.2009.07.014</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Kong</surname>
<given-names>Say Li</given-names>
</name>
<xref rid="aff1" ref-type="aff">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chui</surname>
<given-names>Paul</given-names>
</name>
<xref rid="aff2" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lim</surname>
<given-names>Bing</given-names>
</name>
<email>limb1@gis.a-star.edu.sg</email>
<xref rid="aff1" ref-type="aff">a</xref>
<xref rid="aff3" ref-type="aff">c</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Salto-Tellez</surname>
<given-names>Manuel</given-names>
</name>
<email>patmst@nus.edu.sg</email>
<xref rid="aff4" ref-type="aff">d</xref>
<xref rid="cor2" ref-type="corresp">⁎⁎</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>a</label>
Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore</aff>
<aff id="aff2">
<label>b</label>
Health Sciences Authority, Centre for Forensic Medicine, 11 Outram Road, Singapore 169078, Singapore</aff>
<aff id="aff3">
<label>c</label>
Harvard Institute of Medicine, 77 Ave Louis Pasteur, Boston, MA 02115, USA</aff>
<aff id="aff4">
<label>d</label>
National University Health System and National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author at: National University Health System and National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074.
<email>limb1@gis.a-star.edu.sg</email>
</corresp>
<corresp id="cor2">
<label>⁎⁎</label>
Corresponding author. Fax: +65 67780671.
<email>patmst@nus.edu.sg</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>25</day>
<month>7</month>
<year>2009</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<month>11</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="epub">
<day>25</day>
<month>7</month>
<year>2009</year>
</pub-date>
<volume>145</volume>
<issue>2</issue>
<fpage>260</fpage>
<lpage>269</lpage>
<history>
<date date-type="received">
<day>8</day>
<month>4</month>
<year>2009</year>
</date>
<date date-type="rev-recd">
<day>19</day>
<month>7</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>7</month>
<year>2009</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2009 Elsevier B.V. All rights reserved.</copyright-statement>
<copyright-year>2009</copyright-year>
<copyright-holder>Elsevier B.V.</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract>
<p>Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis; some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, IGF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TAC1. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>ARDS</kwd>
<kwd>SARS-CoV infection</kwd>
<kwd>Pathogenesis</kwd>
<kwd>Therapeutic interventions</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<label>1</label>
<title>Introduction</title>
<p>In 2003, the severe acute respiratory syndrome (SARS) emerged as a life-threatening disease that caused 8096 cases and 774 deaths in 29 countries (
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/">http://www.who.int</ext-link>
,
<xref rid="bib31" ref-type="bibr">2003</xref>
). A new coronavirus (SARS-CoV) was identified as the causative pathogen (
<xref rid="bib17" ref-type="bibr">Ksiazek et al., 2003</xref>
). It trigged fever, dry cough, pulmonary infiltrates, lymphopenia and thrombocytopenia with a mortality rate of 10%. Sporadic cases of SARS-CoV infections due to laboratory exposure were reported after the global outbreak ended. The mechanisms underlying SARS-CoV infections and clinical manifestation remain poorly understood. The high lethality of SARS and its enormous economic and social impacts have highlighted the importance of elucidating the pathogenesis of SARS-CoV infection.</p>
<p>Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury with a mortality rate of 30–50%. It is associated with SARS-CoV infection and characterized by pulmonary oedema, accumulation of inflammatory cells and resulting severe hypoxia. ARDS can initiate the activation of local inflammatory mediators that eventually spill over into the general circulation and resulting a systemic inflammatory response (SIR) (
<xref rid="bib5" ref-type="bibr">Bhatia and Moochhala, 2004</xref>
). As a consequence of SIR, an excessive cytokine-mediated systemic leukocytes activation will lead to the multiple organ dysfunction syndrome (MODS). Owing to the development of ARDS, SARS-CoV infected patients often suffered from MODS, thus explaining its high mortality. Therefore, it is crucial to elucidate the key inflammatory mediators in ARDS to characterize novel therapeutic targets ultimately aiming to stop or ameliorate the disease progression.</p>
<p>Due to the ease of availability, most studies (
<xref rid="bib23" ref-type="bibr">Reghunathan et al., 2005</xref>
,
<xref rid="bib20" ref-type="bibr">Ng et al., 2004</xref>
) applied peripheral blood, throat swab and sputum samples to study the expression and cytokine profiles of SARS-CoV infected patients. However,
<xref rid="bib16" ref-type="bibr">Glass et al. (2004)</xref>
has reported that SARS viral RNA is localized in bronchial and bronchiolar epithelium; while
<xref rid="bib11" ref-type="bibr">Ding et al. (2004)</xref>
has shown that highest viral load was found in lung tissue of SARS-CoV infected patients. Therefore, we attempted to utilize the formalin-fixed, paraffin-embedded (FFPE) tissue samples from SARS-CoV infected patients obtained from clinical autopsy examination as our experimental material. This allowed us to study the molecular changes which occurred at the tissue level, achieving a larger biological relevance.</p>
<p>During the onset of the SARS-CoV epidemic, we hypothesized that the antiviral activation in response to SARS-CoV infections would be mediated by complex mechanisms, where cytokines, chemokines, macrophages and T-cells would be involved through various pathways (
<xref rid="bib25" ref-type="bibr">Salto-Tellez et al., 2005</xref>
). In this study, we characterize the inflammatory mediators involved in the development of ARDS in SARS-CoV infected patients by investigating the gene expression profiles linked to the physiopathological changes occurring in the lung. We show 26 genes that are significantly up-regulated and 5 genes that are significantly down-regulated in the progression of the disease. These genes greatly improve the knowledge of the pathogenesis of SARS-CoV infections and contribute towards the development of therapeutic interventions for this fatal disease and perhaps, for ARDS as a whole.</p>
</sec>
<sec>
<label>2</label>
<title>Materials and methods</title>
<sec>
<label>2.1</label>
<title>Materials</title>
<p>A total of 12 formalin-fixed paraffin-embedded (FFPE) lung tissues from seven patients who died of SARS with positive PCR were obtained from the Health Science Authority (Singapore) with approval from the competent Institutional Ethic's Review Board (DSRB Reference Code B/00/369). The clinical information for these patients is shown in
<xref rid="tbl1" ref-type="table">Table 1</xref>
. Two FFPE lung samples from cases with normal lung histology were included as normal control from cases in which the cause of death was totally unrelated to any lung pathology, directly or indirectly, and with no macroscopic or histologic lung disease in the lungs from which these samples were taken.
<table-wrap position="float" id="tbl1">
<label>Table 1</label>
<caption>
<p>Clinical information of patients died of SARS-CoV infection.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th colspan="7" align="left">Patient
<hr></hr>
</th>
</tr>
<tr>
<th></th>
<th align="left">I</th>
<th align="left">II</th>
<th align="left">III</th>
<th align="left">IV</th>
<th align="left">V</th>
<th align="left">VI</th>
<th align="left">VII</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Age</td>
<td align="left">67</td>
<td align="left">43</td>
<td align="left">38</td>
<td align="left">64</td>
<td align="left">50</td>
<td align="left">29</td>
<td align="left">39</td>
</tr>
<tr>
<td align="left">Gender</td>
<td align="left">Female</td>
<td align="left">Male</td>
<td align="left">Male</td>
<td align="left">Male</td>
<td align="left">Male</td>
<td align="left">Female</td>
<td align="left">Male</td>
</tr>
<tr>
<td align="left">Symptoms</td>
<td align="left">Fever, dry cough</td>
<td align="left">Fever</td>
<td align="left">Fever with mild myalgia and chills</td>
<td align="left">Fever</td>
<td align="left">Fever, dry cough, myalgia, malaise</td>
<td align="left">Fever, malaise, shortness of breath, dry cough</td>
<td align="left">Fever, dry cough</td>
</tr>
<tr>
<td align="left">Diagnosis</td>
<td align="left">Diffuse alveolar damage</td>
<td align="left">Early phase diffuse alveolar damage</td>
<td align="left">Diffuse pneumonia</td>
<td align="left">Bilateral infiltrates, progressive sepsis</td>
<td align="left">Multiorgan failure secondary to SARS</td>
<td align="left">Developed sepsism, multiorgan failure, bleeding tendencies</td>
<td align="left">Atypical Pneumonia; acute myocardial infarct; septic shock</td>
</tr>
<tr>
<td align="left">Treatment</td>
<td align="left">Died at home</td>
<td align="left">Collapsed when admitted</td>
<td align="left">Cortico-steroid given</td>
<td align="left">No cortico-steroid given</td>
<td align="left">Cortico-steroid given</td>
<td align="left">Cortico-steroid given</td>
<td align="left">Cortico-steroid given</td>
</tr>
<tr>
<td align="left">Mechanical ventilation</td>
<td align="left">No</td>
<td align="left">No</td>
<td align="left">Yes</td>
<td align="left">Yes</td>
<td align="left">Yes</td>
<td align="left">Yes</td>
<td align="left">Yes</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec>
<label>2.2</label>
<title>Pathological examination</title>
<p>Section of specimens were stained with haematoxylin and eosin (H&E), and examined under light microscopy (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
). Five of the seven patients had multiple tissues from different areas of the lung showing the disease at different grades of evolution. All these samples were representative of the spectrum of changes in ARDS, showing a clear disease progression from early stage leading to the end-stage lung fibrosis. The morphological description of these samples is shown in
<xref rid="tbl2" ref-type="table">Table 2</xref>
.
<fig id="fig1">
<label>Fig. 1</label>
<caption>
<p>(a–h, j) Representation of histological appearances (H&E stained) for lung tissue samples collected in this study. All these samples were representative of the spectrum of changes in ARDS, showing a clear disease progression from early stage leading to the end-stage lung fibrosis. The morphological description of these samples is shown in
<xref rid="tbl1" ref-type="table">Table 1</xref>
.</p>
</caption>
<graphic xlink:href="gr1"></graphic>
</fig>
<table-wrap position="float" id="tbl2">
<label>Table 2</label>
<caption>
<p>The histological description for FFPE lung samples used in this study.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Patient</th>
<th align="left">Sample</th>
<th align="left">Stage</th>
<th align="left">Grade</th>
<th align="left">Autopsy description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">I</td>
<td align="left">A</td>
<td align="left">Early</td>
<td align="char">1</td>
<td align="left">Alveolar walls with obvious congestion. Alveolar spaces with early membranes (refer
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
a).</td>
</tr>
<tr>
<td align="left">II</td>
<td align="left">B</td>
<td align="left">Early</td>
<td align="char">2</td>
<td align="left">Alveolar spaces with early membranes. Obvious bacterial overgrowth.</td>
</tr>
<tr>
<td align="left">III</td>
<td align="left">C</td>
<td align="left">Early</td>
<td align="char">3</td>
<td align="left">Alveolar spaces with some inflammation and membranes. Early intravascular thrombus formation (refer
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
b).</td>
</tr>
<tr>
<td align="left">III</td>
<td align="left">D</td>
<td align="left">Early</td>
<td align="char">4</td>
<td align="left">Alveolar spaces with some inflammation and membranes (more than in previous). No intravascular thrombus formation.</td>
</tr>
<tr>
<td align="left">IV</td>
<td align="left">E</td>
<td align="left">Early</td>
<td align="char">5</td>
<td align="left">Alveolar spaces with some inflammation and membranes (more than in previous). No intravascular thrombus formation (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
c).</td>
</tr>
<tr>
<td align="left">IV</td>
<td align="left">F</td>
<td align="left">Early</td>
<td align="char">6</td>
<td align="left">Membranes (more than previously,
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
d and e), giant cells (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
f) and vascular changes.</td>
</tr>
<tr>
<td align="left">V</td>
<td align="left">G</td>
<td align="left">Late</td>
<td align="char">7</td>
<td align="left">Some areas relatively unaffected, other with BOOP-like appearance (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
g).</td>
</tr>
<tr>
<td align="left">VI</td>
<td align="left">H</td>
<td align="left">Late</td>
<td align="char">8.1</td>
<td align="left">Intra-alveolar fibrosis and consolidation (
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
h). Giant cells appearance.</td>
</tr>
<tr>
<td align="left">VI</td>
<td align="left">I</td>
<td align="left">Late</td>
<td align="char">8.2</td>
<td align="left">Intra-alveolar fibrosis and consolidation, with giant cells. Early thrombus formation.</td>
</tr>
<tr>
<td align="left">VII</td>
<td align="left">J</td>
<td align="left">Late</td>
<td align="char">9</td>
<td align="left">Extensive intra-alveolar fibrosis and consolidation. Early thrombus formation.</td>
</tr>
<tr>
<td align="left">V</td>
<td align="left">K</td>
<td align="left">Late</td>
<td align="char">10</td>
<td align="left">Increased fibrosis and consolidation (refer
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
j).</td>
</tr>
<tr>
<td align="left">VII</td>
<td align="left">L</td>
<td align="left">Late</td>
<td align="char">11</td>
<td align="left">Fully established fibrosis and consolidation.</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec>
<label>2.3</label>
<title>Sectioning of FFPE samples</title>
<p>Several sections from each FFPE sample were collected in an RNase-free environment with RNaseZap (Ambion Inc., TX) and used for RNA extraction (10 μm thick) and immunohistochemistry experiments (5 μm thick).</p>
</sec>
<sec>
<label>2.4</label>
<title>RNA extraction</title>
<p>Total RNA was isolated from sections of FFPE samples using the Paraffin Block RNA Isolation Kit (Ambion Inc., TX). The FFPE sections were incubated with xylene to remove the paraffin. The tissues were then digested with Proteinase K. The RNA was isolated using Acid Phenol Chloroform, followed by precipitation with isopropanol using linear acrylamide as carrier. DNase I treatment was included to eliminate contamination of genomic DNA.</p>
</sec>
<sec>
<label>2.5</label>
<title>Reverse-transcriptase PCR (RT-PCR)</title>
<p>RT-PCR from 1 μg of RNA template was performed using SuperScript III™ (Invitrogen, CA) to allow for better specificity and higher yields of full-length cDNA products. RNase H digestion was later introduced to remove the RNA templates from cDNA:RNA hybrid molecules for higher sensitivity.</p>
</sec>
<sec>
<label>2.6</label>
<title>Quantitative real-time PCR</title>
<p>We designed a Low Density TaqMan Array
<sup>®</sup>
(LDTA) on Micro Fluidic Card (Applied Biosystems, CA). Quantitative real-time PCR experiments were carried out with pre-developed TaqMan
<sup>®</sup>
probes and TaqMan
<sup>®</sup>
Universal PCR Master Mix in the ABI7900 Real-time PCR (Applied Biosystems, CA) system. All real-time PCR experiments were done in four replicate reactions. All real-time PCR results were expressed as fold changes in mRNA expression of patient samples with respect to the control samples. All results were normalized to the expression of the housekeeping gene β-actin in the PCR reactions.</p>
</sec>
<sec>
<label>2.7</label>
<title>Immunohistochemistry (IHC)</title>
<p>IHC for CD68, CD9, and PECAM-1 were performed according to the manufacturers’ instructions. Briefly, FFPE sections were de-waxed and hydrated. After microwaving and blocking with endogenous peroxidase, the slides were incubated with the antibodies for CD68 (clone KP1, DAKO), CD9 (sc-13118, SANTA CRUZ), and PECAM-1 (clone JC70A, DAKO) stain for 1 h at room temperature, followed by incubation with Envision HRP detection reagent (DAKO ChemMate). Normal bone marrow sections were used as positive controls, showing a representation of all inflammatory cell types. Negative controls were prepared by replacing the primary antibody with Tris-buffered saline. Expression of individual antibodies in the tissue sections was semi-quantitatively scored by a pathologist looking at overall expression in all the morphologically discernible cell types in the section.</p>
</sec>
<sec>
<label>2.8</label>
<title>Statistical analysis</title>
<p>Mann–Whitney and SAM analysis were performed to identify genes that are significantly up- or down-regulated in the progression of disease. For Mann–Whitney analysis, a
<italic>p</italic>
-value of ≤0.05 was considered significant, while
<italic>q</italic>
-value of <5% was considered significant for SAM test. We applied Ingenuity
<sup>®</sup>
Pathway Analysis (Ingenuity Systems Inc., Redwood City, CA) to study the functional network and canonical pathway of the genes (mean expression ≥1.5).</p>
</sec>
</sec>
<sec>
<label>3</label>
<title>Results</title>
<p>We characterized the disease severity of SARS-CoV infection in individual FFPE lung samples based on the histopathological features as described in
<xref rid="tbl2" ref-type="table">Table 2</xref>
. We grouped the FFPE samples to early (Grades 1–6) and late (Grades 7–11) disease stage, demonstrating a clear disease progression from early stage leading to the end-stage lung fibrosis. Due to the bacterial overgrowth observed in the histological section of Sample B, it was eliminated from our analysis.</p>
<p>Real-time PCR experiments were carried out to validate the expression levels for 107 genes (refer
<xref rid="app1" ref-type="sec">Supplementary 1</xref>
) with functional roles in inflammation, coagulation, fibrosis and apoptosis (refer
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
). We grouped the samples to early and late disease stage to compute the average expression level of individual genes. By doing so, we identified a list of 92 genes that were over-expressed (mean expression ≥1.5) in the disease samples versus the control samples (refer
<xref rid="tbl3" ref-type="table">Table 3</xref>
). We used Ingenuity Pathway Analysis to study the functionality of these over-expressed genes (refer
<xref rid="app1" ref-type="sec">Supplementary 2</xref>
). From this list of 92 genes, the statistical analysis showed 26 genes significantly (
<italic>p</italic>
 < 0.05) over-expressed and 5 genes significantly (
<italic>p</italic>
 < 0.05) suppressed (refer
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
,
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
,
<xref rid="tbl4" ref-type="table">Table 4</xref>
) in the progression of disease (early versus late disease stage).
<fig id="fig2">
<label>Fig. 2</label>
<caption>
<p>The characterization of the list of 107 genes studied.</p>
</caption>
<graphic xlink:href="gr2"></graphic>
</fig>
<table-wrap position="float" id="tbl3">
<label>Table 3</label>
<caption>
<p>List of genes that are over-expressed (mean expression level ≥1.5) in SARS-CoV infected lung tissue samples. All real-time qPCR results were expressed as fold changes in mRNA expression of patient samples with respect to the control samples and were normalized to the expression of the housekeeping gene β-actin.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">No.</th>
<th align="left">Over-expressed gene</th>
<th align="left">Mean expression level for early stage</th>
<th align="left">Mean expression level for late stage</th>
</tr>
</thead>
<tbody>
<tr>
<td align="char">1</td>
<td align="left">BPI</td>
<td align="char">159.68</td>
<td align="left">11557.50</td>
</tr>
<tr>
<td align="char">2</td>
<td align="left">ACE2</td>
<td align="char">387.16</td>
<td align="left">2805.44</td>
</tr>
<tr>
<td align="char">3</td>
<td align="left">TAC1</td>
<td align="char">1.04</td>
<td align="left">765.88</td>
</tr>
<tr>
<td align="char">4</td>
<td align="left">CASP3</td>
<td align="char">18.49</td>
<td align="left">520.09</td>
</tr>
<tr>
<td align="char">5</td>
<td align="left">CEACAM8</td>
<td align="char">13.67</td>
<td align="left">274.43</td>
</tr>
<tr>
<td align="char">6</td>
<td align="left">DEFA4</td>
<td align="char">41.77</td>
<td align="left">147.51</td>
</tr>
<tr>
<td align="char">7</td>
<td align="left">IL10</td>
<td align="char">9.37</td>
<td align="left">121.10</td>
</tr>
<tr>
<td align="char">8</td>
<td align="left">CCL3</td>
<td align="char">7.84</td>
<td align="left">76.59</td>
</tr>
<tr>
<td align="char">9</td>
<td align="left">S100A8</td>
<td align="char">2.38</td>
<td align="left">73.41</td>
</tr>
<tr>
<td align="char">10</td>
<td align="left">HLA-A</td>
<td align="char">1.22</td>
<td align="left">60.59</td>
</tr>
<tr>
<td align="char">11</td>
<td align="left">PPBP</td>
<td align="char">4.53</td>
<td align="left">57.73</td>
</tr>
<tr>
<td align="char">12</td>
<td align="left">CCL27</td>
<td align="char">1.00</td>
<td align="left">49.40</td>
</tr>
<tr>
<td align="char">13</td>
<td align="left">LILRA3</td>
<td align="char">6.50</td>
<td align="left">43.80</td>
</tr>
<tr>
<td align="char">14</td>
<td align="left">MICB</td>
<td align="char">16.79</td>
<td align="left">38.89</td>
</tr>
<tr>
<td align="char">15</td>
<td align="left">ANPEP</td>
<td align="char">2.74</td>
<td align="left">36.04</td>
</tr>
<tr>
<td align="char">16</td>
<td align="left">MNDA</td>
<td align="char">0.60</td>
<td align="left">34.09</td>
</tr>
<tr>
<td align="char">17</td>
<td align="left">USP</td>
<td align="char">8.94</td>
<td align="left">32.79</td>
</tr>
<tr>
<td align="char">18</td>
<td align="left">ITGAM</td>
<td align="char">4.88</td>
<td align="left">32.36</td>
</tr>
<tr>
<td align="char">19</td>
<td align="left">CXCL9</td>
<td align="char">49.52</td>
<td align="left">30.22</td>
</tr>
<tr>
<td align="char">20</td>
<td align="left">IL1B</td>
<td align="char">2.25</td>
<td align="left">29.50</td>
</tr>
<tr>
<td align="char">21</td>
<td align="left">C1QB</td>
<td align="char">4.68</td>
<td align="left">28.38</td>
</tr>
<tr>
<td align="char">22</td>
<td align="left">ICAM1</td>
<td align="char">4.56</td>
<td align="left">26.57</td>
</tr>
<tr>
<td align="char">23</td>
<td align="left">MAD</td>
<td align="char">10.93</td>
<td align="left">26.33</td>
</tr>
<tr>
<td align="char">24</td>
<td align="left">CD69</td>
<td align="char">1.96</td>
<td align="left">25.76</td>
</tr>
<tr>
<td align="char">25</td>
<td align="left">CXCL10</td>
<td align="char">164.93</td>
<td align="left">25.57</td>
</tr>
<tr>
<td align="char">26</td>
<td align="left">IMPA2</td>
<td align="char">4.50</td>
<td align="left">24.09</td>
</tr>
<tr>
<td align="char">27</td>
<td align="left">IL1R1</td>
<td align="char">3.22</td>
<td align="left">21.94</td>
</tr>
<tr>
<td align="char">28</td>
<td align="left">GBP</td>
<td align="char">132.93</td>
<td align="left">21.58</td>
</tr>
<tr>
<td align="char">29</td>
<td align="left">CD68</td>
<td align="char">1.31</td>
<td align="left">18.48</td>
</tr>
<tr>
<td align="char">30</td>
<td align="left">EDN1</td>
<td align="char">16.08</td>
<td align="left">16.99</td>
</tr>
<tr>
<td align="char">31</td>
<td align="left">IL8</td>
<td align="char">0.55</td>
<td align="left">16.50</td>
</tr>
<tr>
<td align="char">32</td>
<td align="left">CSF2RA</td>
<td align="char">0.45</td>
<td align="left">16.47</td>
</tr>
<tr>
<td align="char">33</td>
<td align="left">CREBBP</td>
<td align="char">5.98</td>
<td align="left">16.35</td>
</tr>
<tr>
<td align="char">34</td>
<td align="left">FGF7</td>
<td align="char">3.28</td>
<td align="left">16.23</td>
</tr>
<tr>
<td align="char">35</td>
<td align="left">SMAD</td>
<td align="char">8.83</td>
<td align="left">15.34</td>
</tr>
<tr>
<td align="char">36</td>
<td align="left">MSR1</td>
<td align="char">2.46</td>
<td align="left">15.21</td>
</tr>
<tr>
<td align="char">37</td>
<td align="left">IL6</td>
<td align="char">4.59</td>
<td align="left">14.71</td>
</tr>
<tr>
<td align="char">38</td>
<td align="left">CD22</td>
<td align="char">1.36</td>
<td align="left">14.65</td>
</tr>
<tr>
<td align="char">39</td>
<td align="left">PECAM1</td>
<td align="char">2.60</td>
<td align="left">14.10</td>
</tr>
<tr>
<td align="char">40</td>
<td align="left">MALAT-1</td>
<td align="char">4.15</td>
<td align="left">12.27</td>
</tr>
<tr>
<td align="char">41</td>
<td align="left">BCAP29</td>
<td align="char">7.14</td>
<td align="left">11.87</td>
</tr>
<tr>
<td align="char">42</td>
<td align="left">ITGA2B</td>
<td align="char">152.46</td>
<td align="left">11.65</td>
</tr>
<tr>
<td align="char">43</td>
<td align="left">LILRA2</td>
<td align="char">5.12</td>
<td align="left">11.53</td>
</tr>
<tr>
<td align="char">44</td>
<td align="left">RAB31</td>
<td align="char">1.32</td>
<td align="left">11.13</td>
</tr>
<tr>
<td align="char">45</td>
<td align="left">B2M</td>
<td align="char">5.28</td>
<td align="left">10.93</td>
</tr>
<tr>
<td align="char">46</td>
<td align="left">AREG</td>
<td align="char">2.17</td>
<td align="left">9.79</td>
</tr>
<tr>
<td align="char">47</td>
<td align="left">RPGR</td>
<td align="char">3.33</td>
<td align="left">9.47</td>
</tr>
<tr>
<td align="char">48</td>
<td align="left">IFNA6</td>
<td align="char">2.36</td>
<td align="left">8.92</td>
</tr>
<tr>
<td align="char">49</td>
<td align="left">NFIL3</td>
<td align="char">1.50</td>
<td align="left">8.36</td>
</tr>
<tr>
<td align="char">50</td>
<td align="left">CD4</td>
<td align="char">0.87</td>
<td align="left">8.31</td>
</tr>
<tr>
<td align="char">51</td>
<td align="left">LTB4R</td>
<td align="char">2.93</td>
<td align="left">8.27</td>
</tr>
<tr>
<td align="char">52</td>
<td align="left">CCL28</td>
<td align="char">4.10</td>
<td align="left">8.14</td>
</tr>
<tr>
<td align="char">53</td>
<td align="left">VEGF</td>
<td align="char">3.05</td>
<td align="left">8.13</td>
</tr>
<tr>
<td align="char">54</td>
<td align="left">CXCL2</td>
<td align="char">0.90</td>
<td align="left">7.76</td>
</tr>
<tr>
<td align="char">55</td>
<td align="left">NFKBIA</td>
<td align="char">2.93</td>
<td align="left">7.57</td>
</tr>
<tr>
<td align="char">56</td>
<td align="left">IGF1</td>
<td align="char">0.72</td>
<td align="left">7.16</td>
</tr>
<tr>
<td align="char">58</td>
<td align="left">ATP1B1</td>
<td align="char">1.74</td>
<td align="left">7.06</td>
</tr>
<tr>
<td align="char">59</td>
<td align="left">NCF1</td>
<td align="char">2.24</td>
<td align="left">6.87</td>
</tr>
<tr>
<td align="char">60</td>
<td align="left">CASP9</td>
<td align="char">0.33</td>
<td align="left">6.75</td>
</tr>
<tr>
<td align="char">61</td>
<td align="left">KIAA0720</td>
<td align="char">2.06</td>
<td align="left">6.74</td>
</tr>
<tr>
<td align="char">62</td>
<td align="left">IRF3</td>
<td align="char">0.73</td>
<td align="left">6.71</td>
</tr>
<tr>
<td align="char">63</td>
<td align="left">CD14</td>
<td align="char">0.83</td>
<td align="left">6.70</td>
</tr>
<tr>
<td align="char">64</td>
<td align="left">TFPI</td>
<td align="char">3.90</td>
<td align="left">6.53</td>
</tr>
<tr>
<td align="char">65</td>
<td align="left">DTR</td>
<td align="char">4.82</td>
<td align="left">6.52</td>
</tr>
<tr>
<td align="char">66</td>
<td align="left">CD9</td>
<td align="char">1.43</td>
<td align="left">5.59</td>
</tr>
<tr>
<td align="char">67</td>
<td align="left">C4B</td>
<td align="char">2.60</td>
<td align="left">5.37</td>
</tr>
<tr>
<td align="char">68</td>
<td align="left">HIST2H2AA</td>
<td align="char">2.69</td>
<td align="left">5.06</td>
</tr>
<tr>
<td align="char">69</td>
<td align="left">SLPI</td>
<td align="char">0.49</td>
<td align="left">4.32</td>
</tr>
<tr>
<td align="char">70</td>
<td align="left">TNFSF5</td>
<td align="char">1.73</td>
<td align="left">4.00</td>
</tr>
<tr>
<td align="char">71</td>
<td align="left">CSF1</td>
<td align="char">2.91</td>
<td align="left">3.97</td>
</tr>
<tr>
<td align="char">72</td>
<td align="left">C3AR1</td>
<td align="char">1.43</td>
<td align="left">3.92</td>
</tr>
<tr>
<td align="char">73</td>
<td align="left">LTB</td>
<td align="char">1.12</td>
<td align="left">3.86</td>
</tr>
<tr>
<td align="char">74</td>
<td align="left">HLA-DRA</td>
<td align="char">0.73</td>
<td align="left">3.71</td>
</tr>
<tr>
<td align="char">75</td>
<td align="left">PTAFR</td>
<td align="char">1.12</td>
<td align="left">3.60</td>
</tr>
<tr>
<td align="char">76</td>
<td align="left">STAT1</td>
<td align="char">9.86</td>
<td align="left">3.43</td>
</tr>
<tr>
<td align="char">77</td>
<td align="left">ICAM2</td>
<td align="char">1.84</td>
<td align="left">3.41</td>
</tr>
<tr>
<td align="char">78</td>
<td align="left">C5R1</td>
<td align="char">0.29</td>
<td align="left">3.36</td>
</tr>
<tr>
<td align="char">79</td>
<td align="left">PIK3CB</td>
<td align="char">1.65</td>
<td align="left">3.33</td>
</tr>
<tr>
<td align="char">80</td>
<td align="left">TLR2</td>
<td align="char">0.29</td>
<td align="left">2.98</td>
</tr>
<tr>
<td align="char">81</td>
<td align="left">CD3Z</td>
<td align="char">3.02</td>
<td align="left">2.86</td>
</tr>
<tr>
<td align="char">82</td>
<td align="left">EGR1</td>
<td align="char">0.94</td>
<td align="left">2.72</td>
</tr>
<tr>
<td align="char">83</td>
<td align="left">CD8A</td>
<td align="char">0.74</td>
<td align="left">2.39</td>
</tr>
<tr>
<td align="char">84</td>
<td align="left">CCL2</td>
<td align="char">2.16</td>
<td align="left">2.31</td>
</tr>
<tr>
<td align="char">85</td>
<td align="left">TNFRSF1A</td>
<td align="char">0.78</td>
<td align="left">2.25</td>
</tr>
<tr>
<td align="char">87</td>
<td align="left">NR2F2</td>
<td align="char">1.28</td>
<td align="left">2.10</td>
</tr>
<tr>
<td align="char">86</td>
<td align="left">EGR2</td>
<td align="char">1.22</td>
<td align="left">2.10</td>
</tr>
<tr>
<td align="char">88</td>
<td align="left">IFNB1</td>
<td align="char">0.82</td>
<td align="left">1.75</td>
</tr>
<tr>
<td align="char">89</td>
<td align="left">IFNA1</td>
<td align="char">2.08</td>
<td align="left">1.52</td>
</tr>
<tr>
<td align="char">90</td>
<td align="left">HP</td>
<td align="char">0.14</td>
<td align="left">1.51</td>
</tr>
<tr>
<td align="char">91</td>
<td align="left">IFNG</td>
<td align="char">1.74</td>
<td align="left">1.05</td>
</tr>
<tr>
<td align="char">92</td>
<td align="left">CLC</td>
<td align="char">12.29</td>
<td align="left">1.00</td>
</tr>
</tbody>
</table>
</table-wrap>
<fig id="fig3">
<label>Fig. 3</label>
<caption>
<p>Expression profiles of the top 5 genes that are significantly up-regulated in the severity progression of SARS-CoV infections (open bars represent early disease stage samples; filled bars represent late disease stage samples).</p>
</caption>
<graphic xlink:href="gr3"></graphic>
</fig>
<fig id="fig4">
<label>Fig. 4</label>
<caption>
<p>Expression profiles of the top 5 genes that are significantly down-regulated in the severity progression of SARS-CoV infections (open bars represent early disease stage samples; filled bars represent late disease stage samples).</p>
</caption>
<graphic xlink:href="gr4"></graphic>
</fig>
<table-wrap position="float" id="tbl4">
<label>Table 4</label>
<caption>
<p>SAM and Mann–Whitney analysis were performed to identify genes that are significantly up- or down-regulated in the progression of disease.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Gene</th>
<th colspan="2" align="left">Mann–Whitney test
<hr></hr>
</th>
<th colspan="2" align="left">SAM test
<hr></hr>
</th>
<th align="left">Mean early expression level</th>
<th align="left">Mean late expression level</th>
</tr>
<tr>
<th></th>
<th align="left">
<italic>Z</italic>
</th>
<th align="left">
<italic>p</italic>
-val – 2 × 1 sided</th>
<th align="left">Score(
<italic>d</italic>
)</th>
<th align="left">
<italic>q</italic>
-Value (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="7" align="left">(a) Up-regulated</td>
</tr>
<tr>
<td align="left"> BPI</td>
<td align="left">−2.934</td>
<td align="left">0.002</td>
<td align="left">2.175</td>
<td align="left">4.856</td>
<td align="left">159.68</td>
<td align="left">11557.50</td>
</tr>
<tr>
<td align="left"> CASP3</td>
<td align="left">−2.082</td>
<td align="left">0.041</td>
<td align="left">N.A.</td>
<td align="left">N.A.</td>
<td align="left">18.49</td>
<td align="left">520.09</td>
</tr>
<tr>
<td align="left"> CEACAM8</td>
<td align="left">−2.562</td>
<td align="left">0.009</td>
<td align="left">1.794</td>
<td align="left">4.856</td>
<td align="left">13.67</td>
<td align="left">274.43</td>
</tr>
<tr>
<td align="left"> S100A8</td>
<td align="left">−2.082</td>
<td align="left">0.041</td>
<td align="left">1.845</td>
<td align="left">4.856</td>
<td align="left">2.38</td>
<td align="left">73.41</td>
</tr>
<tr>
<td align="left"> ANPEP</td>
<td align="left">−2.082</td>
<td align="left">0.041</td>
<td align="left">3.617</td>
<td align="left">4.856</td>
<td align="left">2.74</td>
<td align="left">36.04</td>
</tr>
<tr>
<td align="left"> USP</td>
<td align="left">N.A.</td>
<td align="left">N.A.</td>
<td align="left">0.884</td>
<td align="left">0</td>
<td align="left">8.94</td>
<td align="left">32.79</td>
</tr>
<tr>
<td align="left"> C1QB</td>
<td align="left">−1.761</td>
<td align="left">0.093</td>
<td align="left">1.999</td>
<td align="left">4.856</td>
<td align="left">4.68</td>
<td align="left">28.38</td>
</tr>
<tr>
<td align="left"> IL1R1</td>
<td align="left">−2.402</td>
<td align="left">0.015</td>
<td align="left">1.910</td>
<td align="left">4.856</td>
<td align="left">3.22</td>
<td align="left">21.94</td>
</tr>
<tr>
<td align="left"> CD68</td>
<td align="left">−2.562</td>
<td align="left">0.009</td>
<td align="left">2.130</td>
<td align="left">4.856</td>
<td align="left">1.31</td>
<td align="left">18.48</td>
</tr>
<tr>
<td align="left"> IL8</td>
<td align="left">−2.082</td>
<td align="left">0.041</td>
<td align="left">1.657</td>
<td align="left">4.856</td>
<td align="left">0.55</td>
<td align="left">16.50</td>
</tr>
<tr>
<td align="left"> FGF7</td>
<td align="left">−1.761</td>
<td align="left">0.093</td>
<td align="left">2.165</td>
<td align="left">4.856</td>
<td align="left">3.28</td>
<td align="left">16.23</td>
</tr>
<tr>
<td align="left"> MSR1</td>
<td align="left">−2.242</td>
<td align="left">0.026</td>
<td align="left">1.997</td>
<td align="left">4.856</td>
<td align="left">2.46</td>
<td align="left">15.21</td>
</tr>
<tr>
<td align="left"> MALAT-1</td>
<td align="left">N.A.</td>
<td align="left">N.A.</td>
<td align="left">1.061</td>
<td align="left">0</td>
<td align="left">4.15</td>
<td align="left">12.27</td>
</tr>
<tr>
<td align="left"> RAB31</td>
<td align="left">−2.082</td>
<td align="left">0.041</td>
<td align="left">2.403</td>
<td align="left">4.856</td>
<td align="left">1.32</td>
<td align="left">11.13</td>
</tr>
<tr>
<td align="left"> NFIL3</td>
<td align="left">−2.882</td>
<td align="left">0.002</td>
<td align="left">2.934</td>
<td align="left">4.856</td>
<td align="left">1.50</td>
<td align="left">8.36</td>
</tr>
<tr>
<td align="left"> CD4</td>
<td align="left">−2.402</td>
<td align="left">0.015</td>
<td align="left">2.578</td>
<td align="left">4.856</td>
<td align="left">0.87</td>
<td align="left">8.31</td>
</tr>
<tr>
<td align="left"> IGF1</td>
<td align="left">−2.882</td>
<td align="left">0.002</td>
<td align="left">4.448</td>
<td align="left">4.856</td>
<td align="left">0.72</td>
<td align="left">7.16</td>
</tr>
<tr>
<td align="left"> CASP9</td>
<td align="left">−2.242</td>
<td align="left">0.026</td>
<td align="left">1.768</td>
<td align="left">4.856</td>
<td align="left">0.33</td>
<td align="left">6.75</td>
</tr>
<tr>
<td align="left"> IRF3</td>
<td align="left">−2.882</td>
<td align="left">0.002</td>
<td align="left">2.635</td>
<td align="left">4.856</td>
<td align="left">0.73</td>
<td align="left">6.71</td>
</tr>
<tr>
<td align="left"> CD14</td>
<td align="left">−2.562</td>
<td align="left">0.009</td>
<td align="left">3.749</td>
<td align="left">4.856</td>
<td align="left">0.83</td>
<td align="left">6.70</td>
</tr>
<tr>
<td align="left"> SLPI</td>
<td align="left">−2.242</td>
<td align="left">0.026</td>
<td align="left">1.863</td>
<td align="left">4.856</td>
<td align="left">0.49</td>
<td align="left">4.32</td>
</tr>
<tr>
<td align="left"> TNFSF5</td>
<td align="left">N.A.</td>
<td align="left">N.A.</td>
<td align="left">0.884</td>
<td align="left">0</td>
<td align="left">1.73</td>
<td align="left">4.00</td>
</tr>
<tr>
<td align="left"> HLA-DRA</td>
<td align="left">−2.562</td>
<td align="left">0.009</td>
<td align="left">2.003</td>
<td align="left">4.856</td>
<td align="left">0.73</td>
<td align="left">3.71</td>
</tr>
<tr>
<td align="left"> C5R1</td>
<td align="left">−2.082</td>
<td align="left">0.041</td>
<td align="left">1.723</td>
<td align="left">4.856</td>
<td align="left">0.29</td>
<td align="left">3.36</td>
</tr>
<tr>
<td align="left"> TLR2</td>
<td align="left">−2.402</td>
<td align="left">0.015</td>
<td align="left">2.356</td>
<td align="left">4.856</td>
<td align="left">0.29</td>
<td align="left">2.98</td>
</tr>
<tr>
<td align="left"> HP</td>
<td align="left">−1.684</td>
<td align="left">0.093</td>
<td align="left">1.719</td>
<td align="left">4.856</td>
<td align="left">0.14</td>
<td align="left">1.51</td>
</tr>
<tr>
<td colspan="7" align="left">

</td>
</tr>
<tr>
<td colspan="7" align="left">(b) Down-regulated</td>
</tr>
<tr>
<td align="left"> CXCL10</td>
<td align="left">2.402</td>
<td align="left">0.015</td>
<td align="left">N.A.</td>
<td align="left">N.A.</td>
<td align="left">164.93</td>
<td align="left">25.57</td>
</tr>
<tr>
<td align="left"> GBP</td>
<td align="left">N.A.</td>
<td align="left">N.A.</td>
<td align="left">−1.061</td>
<td align="left">0</td>
<td align="left">132.93</td>
<td align="left">21.58</td>
</tr>
<tr>
<td align="left"> ITGA2B</td>
<td align="left">2.201</td>
<td align="left">0.026</td>
<td align="left">N.A.</td>
<td align="left">N.A.</td>
<td align="left">152.46</td>
<td align="left">11.65</td>
</tr>
<tr>
<td align="left"> STAT1</td>
<td align="left">N.A.</td>
<td align="left">N.A.</td>
<td align="left">−0.884</td>
<td align="left">0</td>
<td align="left">9.86</td>
<td align="left">3.43</td>
</tr>
<tr>
<td align="left"> CLC</td>
<td align="left">3.077</td>
<td align="left">0.002</td>
<td align="left">N.A.</td>
<td align="left">N.A.</td>
<td align="left">12.29</td>
<td align="left">1.00</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Statistical significance:
<italic>p</italic>
 < 0.05 by Mann–Whitney test;
<italic>q</italic>
-value < 5% by SAM method. N.A. = not available.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
<p>As summarized in
<xref rid="tbl4" ref-type="table">Table 4</xref>
, the transcriptome of SARS-CoV infected patients in late disease stage was characterized by the high expression of genes coding for chemokine (IL-8), complement component (C1QB), antibacterial response protein (TLR2), cytokine receptor (IL1R1 and TNFSF5), apoptosis-related cystein protease (CASP3 and CASP9), immunoglobulin receptor family member (CD4 and CD14), growth factors (FGF7 and IFG1), transcription factors (IRF3 and NFIL3), major histocompatibility complex antigen (HLA-DRA), receptors (ANPEP, C5R1 and MSR1), protease (HP, USP33 and SLPI), cell adhesion molecule (CEACAM8) and genes of miscellaneous functions (BPI, CD68, MALAT-1, RAB31 and S100A8). In contrast, notably low expression levels of cytokine (CLC and CXCL10), cell adhesion molecule (ITGA2B), transcription factor (STAT1) and protease (GBP) were found in patients of late disease stage. Through the use of Ingenuity
<sup>®</sup>
Pathway Analysis, we demonstrated that the list of over-expressed genes were involved in immunological response (refer
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
). Only a handful of genes appeared to be involved in this network analysis (with known and reported functionality), hence it highlights the novel insights in our study that majority of the over-expressed genes with important roles in the pathogenesis of SARS-CoV infection still remains unreported.
<fig id="fig5">
<label>Fig. 5</label>
<caption>
<p>List of genes involved in immunological response against viral or bacterial infection (data were analyzed through the use of Ingenuity
<sup>®</sup>
Pathway Analysis).</p>
</caption>
<graphic xlink:href="gr5"></graphic>
</fig>
</p>
<p>In order to confirm that the gene expression profiles have functional significance, we performed protein expression analysis by IHC for CD68, CD9 and PECAM. These were selected because they (a) were differentially expressed in both disease groups; (b) can be directly attributed to specific cellular types (macrophages, lymphocytic and endothelial); and (c) have robust, reported protocols used in the routine pathology setting and can be easily visualized and quantified. The results demonstrated that the gene expression profile correlates well with the degree of protein expression (refer
<xref rid="fig6" ref-type="fig">Fig. 6</xref>
). This highlighted the reliability of our gene expression profiling results.
<fig id="fig6">
<label>Fig. 6</label>
<caption>
<p>The IHC results demonstrated the correlation between gene and protein expression profiles in SARS-CoV infected patients.</p>
</caption>
<graphic xlink:href="gr6"></graphic>
</fig>
</p>
</sec>
<sec>
<label>4</label>
<title>Discussion</title>
<sec>
<label>4.1</label>
<title>Characterization of gene expression profiles of SARS-CoV infections</title>
<p>The main contribution of our study is to establish which genes are of major biological and possibly clinical importance in a complex pathobiological reactions such as SARS-CoV infections and resulting ARDS. Here, we will discuss the roles and importance of the list of genes that are up- or down-regulated in the pathogenesis of ARDS in SARS-CoV infections.</p>
<p>In our study, bactericidal/permeability-increasing protein (BPI) appears as the highest expressed gene in the late disease stage. It is a major constituent of neutrophils with anti-inflammatory properties and plays an integral part in innate immunity (
<xref rid="bib13" ref-type="bibr">Elsbach, 1998</xref>
). Interleukin-8 (IL-8), another gene that is significantly over-expressed in disease samples, has been reported to cause airway inflammation and plays the role as neutrophilic activator in the pathogenesis of bronchiolitis. IL-8 has been also shown to up-regulate in the lung samples of SARS-CoV infected macaques (
<xref rid="bib9" ref-type="bibr">de Lang et al., 2007</xref>
). Reports by
<xref rid="bib1" ref-type="bibr">Aichele et al. (2006)</xref>
showed both BPI and IL-8 were released from neutrophils in a time-dependent manner following bacterial encounter in cystic fibrosis patients. In accordance to these studies, our data demonstrates up-regulation of BPI and IL-8 in SARS-CoV infections, presumably in an attempt to activate the immune response to combat the SARS-CoV infections.</p>
<p>Angiotensin converting enzyme 2 (ACE2) was identified as the functional cellular receptor for SAR-CoV and expressed at high level in the primary target cells of SARS-CoV (
<xref rid="bib19" ref-type="bibr">Li et al., 2003</xref>
). We suggest that over-expression of ACE2 in our patient samples might correlate with increase susceptibility to SARS-CoV infection.</p>
<p>Tachykinin precursor 1 (TAC1) is present in sensory nerves of the lung. Reports indicated that TAC1 contributes to pathophysiology of bronchial hyper-responsiveness, airway construction, inflammation, chronic bronchitis and cough (
<xref rid="bib28" ref-type="bibr">Springer et al., 2005</xref>
). Here, we show that over-expression of TAC1 contributes towards the appearance of the above-mentioned symptoms in SARS-CoV infected patients.</p>
<p>The key recognition receptors of the innate immune system are CD14 and Toll-like receptors (TLR). CD14 requires transmembrane receptors (e.g. TLRs) to initiate a stimulus-specific activation process. TLRs are responsible for quick recognition and response to pathogen, and consequently have vital roles in survival by boosting the host immune system during life-threatening infection (
<xref rid="bib21" ref-type="bibr">O’Neill, 2006</xref>
). Here, we provide the evidence that innate immune response is activated in SARS-CoV infections.</p>
<p>Interferon regulatory factor-3 (IRF-3) is necessary for the transcriptional induction of IFN-stimulated genes (ISGs) in response to viral infection or TLR signaling (
<xref rid="bib7" ref-type="bibr">Cheng et al., 2006</xref>
). Significant up-regulation of IRF-3 in response to SARS-CoV infection indicates that IRF-3 has distinct contributions to innate or acquired immunity via induction of ISGs.</p>
<p>Alanyl aminopeptidase (ANPEP) is a transmembrane protease present in leukocytes. It was identified as the cellular receptor for human coronavirus (
<xref rid="bib30" ref-type="bibr">Vijgen et al., 2004</xref>
). Our findings strongly suggest that enrichment of ANPEP is a feature of late disease stage in SARS-CoV infection.</p>
<p>Tumor necrosis factor receptor superfamily, member 5 (TNFRSF5) is a key signaling molecule expressed by antigen-presenting cells of the immune system. Our detected TNFRSF5 up-regulations in SARS-CoV infection, may activate T cells and induce adhesion molecules such as carcino embryonic antigen related cell adhesion molecule 8 (CEACAM8), which is expressed by activated monocytes and granulocytes to overcome the invading microorganisms (
<xref rid="bib10" ref-type="bibr">Deree et al., 2006</xref>
), also up-regulated in our study.</p>
<p>Insulin-like growth factor-1 (IGF-1) has been reported to induce the hypoxia-inducible factor-α (HIF-α) and activates the hypoxic expression of target genes involved in cell adaptation to low oxygen concentrations (
<xref rid="bib15" ref-type="bibr">Fukuda et al., 2002</xref>
). Macrophage scavenger receptor 1 (MSR1) is one of the hypoxia-induced genes that are involved in the clearance of pathogens and apoptotic cells (
<xref rid="bib22" ref-type="bibr">Platt et al., 1996</xref>
). Haptoglobin (HP) is produced by inflammatory cells in protection against oxidative stress and inflammation (
<xref rid="bib12" ref-type="bibr">Eaton et al., 1982</xref>
). Together, our observation on the up-regulation of IGF-1, MSR1 and HP demonstrate their roles in adapting the cells to the oxidative stress and hypoxic environment, another common occurrence in SARS-CoV infected patients.</p>
<p>Secretory leukocyte proteinase inhibitor (SLPI) is produced by lung tissues, as well as monocytes, alveolar macrophages and neutrophils. In ARDS, SLPI is markedly increased in bronchoalveolar lavage fluid and positively correlated with the multiple organ failure score (MOFS) (
<xref rid="bib24" ref-type="bibr">Sallenave et al., 1999</xref>
,
<xref rid="bib3" ref-type="bibr">Asano et al., 1995</xref>
). We reported increase of SLPI in SARS-CoV infected lung, this is consistent with the hypothesis that SLPI is the ‘alarm inhibitor’ at the onset of the inflammatory process.</p>
<p>S100 calcium binding protein A8 (S100A8) is present in the extracellular milleu during infections and inflammatory process. It has been shown to regulate monocyte, lymphocyte and neutrophil migration (
<xref rid="bib14" ref-type="bibr">Frosch et al., 2000</xref>
). Our study also shows the Rab31 up-regulation in mediating the endocytosis and exocytosis responses. This is in concordance with the reports by
<xref rid="bib23" ref-type="bibr">Reghunathan et al. (2005)</xref>
.</p>
<p>CD68 is expressed in the endosomal compartment of all cells of mononuclear phagocyte lineage. Our CD68 gene up-regulatoin is a direct expression of monocyte recruitment and macrophages differentiation. This was confirmed by the CD68 protein up-regulation by IHC and the localization of its expression in the cytoplasmic compartment of macrophages.</p>
<p>Up-regulation of Fibroblast growth factor-7 (FGF-7) could be explained by its involvement in immune system modulation, as well as thrombin accumulation and fibrin deposition (
<xref rid="bib26" ref-type="bibr">Samoszuk et al., 2005</xref>
). Integrin α
<sub>IIb</sub>
β
<sub>3</sub>
(ITGA2B) serves as the receptor for fibrinogen upon platelet stimulation. It is important in platelet adhesion and clot retraction (
<xref rid="bib6" ref-type="bibr">Calzada et al., 2002</xref>
). We observe a significant up-regulation of ITGA2B at the early stage of the SARS-CoV infections, suggesting that upon SARS-CoV entry, ITGA2B was stimulated to mediate platelet aggregation and adhesion.</p>
<p>Cardiotrophin-like cytokine (CLC) has been reported to activate the proliferation of B cells and antibody production (
<xref rid="bib27" ref-type="bibr">Senaldi et al., 2002</xref>
). We have observed over-expression of CLC in the early stage of SARS-CoV infections, indicating that this may be the most important phase for B-cell related immunity.</p>
<p>Our results indicated that early stage of SARS-CoV infection has also induced the production of interferon-gamma-inducible protein 10 (CXCL10), a potent chemoattractant for activated T cells and natural killer (NK) cells (
<xref rid="bib29" ref-type="bibr">Vanguri and Farber, 1990</xref>
), that can lead to leukocyte activation, extravasation and migration, thus generates a rapid innate antiviral response to aid the attempts of viral clearance in SARS-CoV infected lung.</p>
<p>GTPase guanylate-binding protein-1 (GBP-1) is a major IFN-γ-induced protein with anti-proliferative role in endothelial cells upon invasion by inflammatory cytokines (ICs). GBP-1 expression was inhibited in the progression of SARS-CoV infection. Thus, we propose that GBP-1 repression is important to restore the necessary neovascularization to accompany the late inflammatory changes in SARS-CoV related ARDS.</p>
<p>Signal transducer and activator of transcription 1 (STAT1) is important in transmitting inflammatory cytokine signals and inducing inflammatoty mediators from inflammatory cells. Phosphorylated STAT1 translocates transcription factors into the nucleus, where they activate IFN-inducible genes that participate in host defense (
<xref rid="bib18" ref-type="bibr">Levy and Darnell, 2002</xref>
). We suggest that down-regulation of STAT1 increases the susceptibility of the host to SARS-CoV infection because of impaired IFN response.</p>
</sec>
<sec>
<label>4.2</label>
<title>Propose therapeutic targets in combating SARS-CoV infections</title>
<p>For most of the inflammatory mediators indicated in this study, a possible
<italic>in vitro</italic>
inhibitor has been postulated. For some of these genes there are already natural or synthetic inhibitors, and these may prove a useful starting point for future therapeutic design and prioritization of avenues for therapeutic intervention.</p>
<p>Natural and synthetic inhibitors of ANPEP, such as Bestatin, are able to influence immune functions and major biological events (cell proliferation, invasion, angiogenesis) (
<xref rid="bib4" ref-type="bibr">Bauvois and Dauzonne, 2006</xref>
). C1qB is essential in recruiting the SARS-CoV to neutrophils, macrophages and T cells for phagocytosis. Treatment of all macrophages populations with dexamethasone resulted in a strong increase of C1q synthesis and secretion (
<xref rid="bib2" ref-type="bibr">Armbrust et al., 1997</xref>
). Thus, Bestatin and dexamethasone could be a useful therapeutic agent, in combination with others, against SARS-CoV infection.</p>
<p>TAC receptor antagonists such as SR140333, SP142801 and SB223412 have been reported to demonstrate a significant broncho-protection role (
<xref rid="bib8" ref-type="bibr">Daoui et al., 2001</xref>
) and could be a possible therapeutic target in the SARS disease.</p>
<p>Finally, airway inflammation is often associated with the infiltration of activated neutrophils and subsequent protease release; this can be prevented by the effect of SLPI to contain the excessive release of proteases. The specific site of synthesis (lung) with define functions make SLPI a very attractive candidate as potential therapeutic agent.</p>
</sec>
</sec>
<sec>
<label>5</label>
<title>Conclusions</title>
<p>Only gene expression measurements that take place in the damaged tissues are likely to elucidate a complete physiopathological picture of the disease. Based on the evidence of our gene expression study, we hypothesize SARS-CoV infections require (i) expression of ANPEP, a receptor for CoV; (ii) impaired immune system by inhibiting STAT1 pathways and subsequently; (iii) prevent the production of IFNs. We hypothesize the model of SARS pathogenesis with new and novel insights in
<xref rid="fig7" ref-type="fig">Fig. 7</xref>
.
<fig id="fig7">
<label>Fig. 7</label>
<caption>
<p>Hypothesized pathogenesis model for SARS-CoV infections.</p>
</caption>
<graphic xlink:href="gr7"></graphic>
</fig>
</p>
<p>A complex immunological spectrum of changes such as the SARS-CoV related ARDS would involve numerous biological events related to neutrophilic activation, detection of SARS-CoV specific targets, cell migration, thrombosis and vascular proliferation, among others. Our study characterizes the main genes for these functions, and highlights the time in the disease development in which these biomarkers are of importance. Due to the limitation that collection of lung tissue collected from deceased patients and not in a time-point manner from the disease onset to the manifestation of SARS-CoV infection, we are unable to conclude if the expression profile explains exclusively the effects of the SARS-CoV itself, or the effects of other ongoing process at the tissue level such as the concomitant hypoxia, the cell infiltration which is a part of pathological process, or even the effects of therapeutic modalities used.</p>
<p>In conclusion, our study demonstrates that during the initial phase of the SARS-CoV infection, antiviral cytokines are suppressed. The affected lung tissue will then produce abundant chemokines and inflammatory cell recruitment. Parallel to this description, we describe the pathophysiology of the SARS-CoV related tissue changes and hypothesize the useful disease severity markers and therapeutic targets.</p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="bib1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aichele</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Schnare</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Saake</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rollinghoff</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gessner</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Expression and antimicrobial function of bactericidal permeability-increasing protein in cystic fibrosis patients</article-title>
<source>Infect. Immun.</source>
<volume>74</volume>
<issue>8</issue>
<year>2006</year>
<fpage>4708</fpage>
<lpage>4714</lpage>
<pub-id pub-id-type="pmid">16861658</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Armbrust</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nordmann</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kreibig</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ramadori</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>C1Q synthesis by tissue mononuclear phagocytes from normal and from damaged rat liver: up-regulation by dexamethasone, down-regulation by interferon gamma, and lipopolysaccharide</article-title>
<source>Hepatology</source>
<volume>26</volume>
<year>1997</year>
<fpage>98</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="pmid">9214457</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asano</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kida</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Koyama</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wada</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Izawa</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hosoda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Masuda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>A morphological study of lung secretory leukoprotease inhibitor in pneumonia</article-title>
<source>Am. J. Respir. Crit. Care Med.</source>
<volume>151</volume>
<year>1995</year>
<fpage>1576</fpage>
<lpage>1581</lpage>
<pub-id pub-id-type="pmid">7735617</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bauvois</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dauzonne</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Aminopeptidase-N/CD13 inhibitors: chemistry, biological evaluations, and therapeutic prospects</article-title>
<source>Med. Res. Rev.</source>
<volume>26</volume>
<issue>1</issue>
<year>2006</year>
<fpage>88</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="pmid">16216010</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhatia</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Moochhala</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome</article-title>
<source>J. Pathol.</source>
<volume>202</volume>
<year>2004</year>
<fpage>145</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="pmid">14743496</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calzada</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Alvarez</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Gonzalez-Rodríguez</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Agonist-specific structural rearrangements of integrin α
<sub>IIb</sub>
β
<sub>3</sub>
</article-title>
<source>J. Biol. Chem.</source>
<volume>277</volume>
<year>2002</year>
<fpage>39899</fpage>
<lpage>39908</lpage>
<pub-id pub-id-type="pmid">12140290</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Brzostek</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ando</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Scoy</surname>
<given-names>S.V.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>K.P.</given-names>
</name>
<name>
<surname>Reich</surname>
<given-names>N.C.</given-names>
</name>
</person-group>
<article-title>Differential activation of IFN regulator factor (IRF)-3 and IRF-5 transcription factors during viral infection</article-title>
<source>J. Immunol.</source>
<volume>176</volume>
<year>2006</year>
<fpage>7462</fpage>
<lpage>7470</lpage>
<pub-id pub-id-type="pmid">16751392</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Daoui</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ahnaou</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Naline</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Emonds-Alt</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Lagente</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Tachykinin NK
<sub>3</sub>
receptor agonists induced microvascular leakage hypersensitivity in the guinea-pig airways</article-title>
<source>Eur. J. Pharmacol.</source>
<volume>433</volume>
<year>2001</year>
<fpage>199</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="pmid">11755153</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Lang</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Baas</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Teal</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Leijten</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Rain</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>B.L.</given-names>
</name>
<name>
<surname>Katze</surname>
<given-names>M.G.</given-names>
</name>
</person-group>
<article-title>Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV-infected macaques</article-title>
<source>PLoS Pathog.</source>
<volume>3</volume>
<issue>8</issue>
<year>2007</year>
<fpage>e112</fpage>
<pub-id pub-id-type="pmid">17696609</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deree</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lall</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Melbostad</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hoyt</surname>
<given-names>D.B.</given-names>
</name>
<name>
<surname>Coimbra</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Neutrophil degranulation and the effects of phosphodiesterase inhibition</article-title>
<source>J. Surg. Res.</source>
<volume>133</volume>
<year>2006</year>
<fpage>22</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="pmid">16690368</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Che</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Geng</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Weng</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways</article-title>
<source>J. Pathol.</source>
<volume>203</volume>
<year>2004</year>
<fpage>622</fpage>
<lpage>630</lpage>
<pub-id pub-id-type="pmid">15141376</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eaton</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mahoney</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.T.</given-names>
</name>
</person-group>
<article-title>Haptoglobin: a natural bacteriostat</article-title>
<source>Science</source>
<volume>215</volume>
<year>1982</year>
<fpage>691</fpage>
<lpage>693</lpage>
<pub-id pub-id-type="pmid">7036344</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elsbach</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>The bactericidal/permeability-increasing protein (BPI) in anti-bacterial host defense</article-title>
<source>J. Leuk. Biol.</source>
<volume>64</volume>
<year>1998</year>
<fpage>14</fpage>
<lpage>18</lpage>
</element-citation>
</ref>
<ref id="bib14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frosch</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Strey</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Vogl</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wulffraat</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Kuis</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Sunderkötter</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Harms</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Sorg</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Roth</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Myeloid-related proteins 8 and 14 are specifically secreted during interaction of phagocytes and activated endothelium and are useful markers for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthritis</article-title>
<source>Arthritis Rheum.</source>
<volume>43</volume>
<year>2000</year>
<fpage>628</fpage>
<lpage>637</lpage>
<pub-id pub-id-type="pmid">10728757</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukuda</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hirota</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>Y.D.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Semenza</surname>
<given-names>G.L.</given-names>
</name>
</person-group>
<article-title>Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells</article-title>
<source>J. Biol. Chem.</source>
<volume>277</volume>
<year>2002</year>
<fpage>38205</fpage>
<lpage>38211</lpage>
<pub-id pub-id-type="pmid">12149254</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glass</surname>
<given-names>W.G.</given-names>
</name>
<name>
<surname>Subbarao</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>P.M.</given-names>
</name>
</person-group>
<article-title>Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection in mice</article-title>
<source>J. Immunol.</source>
<volume>173</volume>
<year>2004</year>
<fpage>4030</fpage>
<lpage>4039</lpage>
<pub-id pub-id-type="pmid">15356152</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ksiazek</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Erdman</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Goldsmmoth</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Peret</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Emery</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Urbani</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Comer</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Rollin</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Dowell</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Ling</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Humphrey</surname>
<given-names>C.D.</given-names>
</name>
<name>
<surname>Shieh</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Guarner</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Paddock</surname>
<given-names>C.D.</given-names>
</name>
<name>
<surname>Rota</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Fields</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>DeRisi</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>LeDuc</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Bellini</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>L.J.</given-names>
</name>
<collab>SARS Working Group</collab>
</person-group>
<article-title>A novel coronavirus associated with severe acute respiratory syndrome</article-title>
<source>N. Engl. J. Med.</source>
<volume>348</volume>
<year>2003</year>
<fpage>1953</fpage>
<lpage>1966</lpage>
<pub-id pub-id-type="pmid">12690092</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levy</surname>
<given-names>D.E.</given-names>
</name>
<name>
<surname>Darnell</surname>
<given-names>J.E.J.</given-names>
</name>
</person-group>
<article-title>Stats: transcriptional control and biological impact</article-title>
<source>Nat. Rev. Mol. Cell Biol.</source>
<volume>3</volume>
<year>2002</year>
<fpage>651</fpage>
<lpage>662</lpage>
<pub-id pub-id-type="pmid">12209125</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Vasilieva</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sui</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Berne</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Somasundaran</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Luzuriaga</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Greenough</surname>
<given-names>T.C.</given-names>
</name>
<name>
<surname>Choe</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Farzan</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus</article-title>
<source>Nature</source>
<volume>426</volume>
<year>2003</year>
<fpage>450</fpage>
<lpage>454</lpage>
<pub-id pub-id-type="pmid">14647384</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>C.W.K.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>C.K.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>F.W.T.</given-names>
</name>
</person-group>
<article-title>Inflammatory cytokine profile in children with severe acute respiratory syndrome</article-title>
<source>Pediatrics</source>
<volume>113</volume>
<year>2004</year>
<fpage>7</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">14702440</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Neill</surname>
<given-names>L.A.J.</given-names>
</name>
</person-group>
<article-title>How toll-like receptors signal: what we know and what we don’t know</article-title>
<source>Curr. Opin. Immunol.</source>
<volume>18</volume>
<year>2006</year>
<fpage>3</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">16343886</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Platt</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kurihara</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kodama</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>93</volume>
<year>1996</year>
<fpage>12456</fpage>
<lpage>12460</lpage>
<pub-id pub-id-type="pmid">8901603</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reghunathan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Jayapal</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>L.Y.</given-names>
</name>
<name>
<surname>Chng</surname>
<given-names>H.H.</given-names>
</name>
<name>
<surname>Tai</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>B.P.</given-names>
</name>
<name>
<surname>Melendez</surname>
<given-names>A.J.</given-names>
</name>
</person-group>
<article-title>Expression profile of immune response genes in patients with severe acute respiratory syndrome</article-title>
<source>BMC Immunol.</source>
<volume>6</volume>
<year>2005</year>
<fpage>2</fpage>
<pub-id pub-id-type="pmid">15655079</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sallenave</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Donnelly</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>I.S.</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gauldie</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Secretory leukocyte proteinase inhibitor is preferentially increased in patients with acute respiratory distress syndrome</article-title>
<source>Eur. Respir. J.</source>
<volume>13</volume>
<year>1999</year>
<fpage>1029</fpage>
<lpage>1036</lpage>
<pub-id pub-id-type="pmid">10414400</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salto-Tellez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>ARDS in SARS: cytokine mediators and treatment implications</article-title>
<source>Cytokine</source>
<volume>29</volume>
<year>2005</year>
<fpage>92</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="pmid">15598444</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Samoszuk</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kanakubo</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>J.K.</given-names>
</name>
</person-group>
<article-title>Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts</article-title>
<source>BMC Cancer</source>
<volume>5</volume>
<year>2005</year>
<fpage>121</fpage>
<pub-id pub-id-type="pmid">16176582</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Senaldi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Stolina</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Faggioni</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>McCabe</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kaufman</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Van</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Fletcher</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Boone</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sarmiento</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Cattley</surname>
<given-names>R.C.</given-names>
</name>
</person-group>
<article-title>Regulatory effects of novel neurotrophin-1/b cell-stimulating factor-3 (cardiotrophin-like cytokine) on B cell function</article-title>
<source>J. Immunol.</source>
<volume>168</volume>
<year>2002</year>
<fpage>5690</fpage>
<lpage>5698</lpage>
<pub-id pub-id-type="pmid">12023368</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Springer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Groneberg</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Pregla</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Inflammatory cells as source of tachykinin-induces mucus secretion in chronic bronchitis</article-title>
<source>Regul. Pept.</source>
<volume>124</volume>
<year>2005</year>
<fpage>195</fpage>
<lpage>201</lpage>
<pub-id pub-id-type="pmid">15544859</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vanguri</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Farber</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Identification of CRG-2: an interferon-inducible mRNA predicted to encode a murine monokine</article-title>
<source>J. Biol. Chem.</source>
<volume>265</volume>
<year>1990</year>
<fpage>15049</fpage>
<lpage>15057</lpage>
<pub-id pub-id-type="pmid">2118520</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vijgen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Keyaerts</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Zlateva</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Van Ranst</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Identifiation of 6 new polymorphisms in the human coronavirus 229E receptor gene</article-title>
<source>Int. J. Infect. Dis.</source>
<volume>8</volume>
<year>2004</year>
<fpage>217</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="pmid">15234325</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<mixed-citation publication-type="other">WHO, 2003. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Available:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/">http://www.who.int</ext-link>
.</mixed-citation>
</ref>
</ref-list>
<sec id="app1" sec-type="supplementary-material">
<label>Appendix A</label>
<title>Supplementary data</title>
<p>
<supplementary-material content-type="local-data" id="d32e2832">
<media xlink:href="mmc1.doc"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="d32e2836">
<media xlink:href="mmc2.doc"></media>
</supplementary-material>
</p>
</sec>
<ack>
<title>Acknowledgements</title>
<p>This work was supported by grant from the Biomedical Research Council (BMRC) and A*STAR (Agency for Science, Technology and Research), Singapore. We thank Dr. Jane Sohn Thomsen, Dr. Vladimir Andreevich Kuznetsov and Joshy George from Genome Institute of Singapore in support of this study.</p>
</ack>
<fn-group>
<fn id="d32e2818" fn-type="supplementary-material">
<label>Appendix A</label>
<p>Supplementary data associated with this article can be found, in the online version, at
<ext-link ext-link-type="doi" xlink:href="10.1016/j.virusres.2009.07.014">doi:10.1016/j.virusres.2009.07.014</ext-link>
.</p>
</fn>
</fn-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001595 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001595 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7114434
   |texte=   Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:19635508" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021