Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genomic characterization of a novel SARS-CoV-2

Identifieur interne : 001020 ( Pmc/Corpus ); précédent : 001019; suivant : 001021

Genomic characterization of a novel SARS-CoV-2

Auteurs : Rozhgar A. Khailany ; Muhamad Safdar ; Mehmet Ozaslan

Source :

RBID : PMC:7161481

Abstract

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associated with human to human transmission and extreme human sickness has been as of late announced from the city of Wuhan in China. Our objectives were to mutation analysis between recently reported genomes at various times and locations and to characterize the genomic structure of SARS-CoV-2 using bioinformatics programs. Information on the variation of viruses is of considerable medical and biological impacts on the prevention, diagnosis, and therapy of infectious diseases. To understand the genomic structure and variations of the SARS-CoV-2. The study analyzed 95 SARS-CoV-2 complete genome sequences available in GenBank, National MicrobiologyData Center (NMDC) and NGDC Genome Warehouse from December-2019 until 05 of April-2020. The genomic signature analysis demonstrates that a strong association between the time of sample collection, location of sample and accumulation of genetic diversity. We found 116 mutations, the three most common mutations were 8782C>T in ORF1ab gene, 28144T>C in ORF8 gene and 29095C>T in the N gene. The mutations might affect the severity and spread of the SARS-CoV-2. The finding heavily supports an intense requirement for additional prompt, inclusive investigations that combine genomic detail, epidemiological information and graph records of the clinical features of patients with COVID-19.


Url:
DOI: 10.1016/j.genrep.2020.100682
PubMed: 32300673
PubMed Central: 7161481

Links to Exploration step

PMC:7161481

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genomic characterization of a novel SARS-CoV-2</title>
<author>
<name sortKey="Khailany, Rozhgar A" sort="Khailany, Rozhgar A" uniqKey="Khailany R" first="Rozhgar A." last="Khailany">Rozhgar A. Khailany</name>
<affiliation>
<nlm:aff id="af0005">Department of Biology, College of Science, University of Salahaddin-Erbil, Iraq</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Safdar, Muhamad" sort="Safdar, Muhamad" uniqKey="Safdar M" first="Muhamad" last="Safdar">Muhamad Safdar</name>
<affiliation>
<nlm:aff id="af0010">Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ozaslan, Mehmet" sort="Ozaslan, Mehmet" uniqKey="Ozaslan M" first="Mehmet" last="Ozaslan">Mehmet Ozaslan</name>
<affiliation>
<nlm:aff id="af0015">Department of Biology, Gaziantep University, 27310 Gaziantep, Turkey</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32300673</idno>
<idno type="pmc">7161481</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161481</idno>
<idno type="RBID">PMC:7161481</idno>
<idno type="doi">10.1016/j.genrep.2020.100682</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">001020</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001020</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Genomic characterization of a novel SARS-CoV-2</title>
<author>
<name sortKey="Khailany, Rozhgar A" sort="Khailany, Rozhgar A" uniqKey="Khailany R" first="Rozhgar A." last="Khailany">Rozhgar A. Khailany</name>
<affiliation>
<nlm:aff id="af0005">Department of Biology, College of Science, University of Salahaddin-Erbil, Iraq</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Safdar, Muhamad" sort="Safdar, Muhamad" uniqKey="Safdar M" first="Muhamad" last="Safdar">Muhamad Safdar</name>
<affiliation>
<nlm:aff id="af0010">Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ozaslan, Mehmet" sort="Ozaslan, Mehmet" uniqKey="Ozaslan M" first="Mehmet" last="Ozaslan">Mehmet Ozaslan</name>
<affiliation>
<nlm:aff id="af0015">Department of Biology, Gaziantep University, 27310 Gaziantep, Turkey</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Gene Reports</title>
<idno type="eISSN">2452-0144</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associated with human to human transmission and extreme human sickness has been as of late announced from the city of Wuhan in China. Our objectives were to mutation analysis between recently reported genomes at various times and locations and to characterize the genomic structure of SARS-CoV-2 using bioinformatics programs. Information on the variation of viruses is of considerable medical and biological impacts on the prevention, diagnosis, and therapy of infectious diseases. To understand the genomic structure and variations of the SARS-CoV-2. The study analyzed 95 SARS-CoV-2 complete genome sequences available in GenBank, National MicrobiologyData Center (NMDC) and NGDC Genome Warehouse from December-2019 until 05 of April-2020. The genomic signature analysis demonstrates that a strong association between the time of sample collection, location of sample and accumulation of genetic diversity. We found 116 mutations, the three most common mutations were 8782C>T in ORF1ab gene, 28144T>C in ORF8 gene and 29095C>T in the N gene. The mutations might affect the severity and spread of the SARS-CoV-2. The finding heavily supports an intense requirement for additional prompt, inclusive investigations that combine genomic detail, epidemiological information and graph records of the clinical features of patients with COVID-19.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adhikari, S" uniqKey="Adhikari S">S. Adhikari</name>
</author>
<author>
<name sortKey="Meng, S" uniqKey="Meng S">S. Meng</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arvestad, L" uniqKey="Arvestad L">L. Arvestad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, N" uniqKey="Chen N">N. Chen</name>
</author>
<author>
<name sortKey="Zhou, M" uniqKey="Zhou M">M. Zhou</name>
</author>
<author>
<name sortKey="Dong, X" uniqKey="Dong X">X. Dong</name>
</author>
<author>
<name sortKey="Qu, J" uniqKey="Qu J">J. Qu</name>
</author>
<author>
<name sortKey="Gong, F" uniqKey="Gong F">F. Gong</name>
</author>
<author>
<name sortKey="Han, Y" uniqKey="Han Y">Y. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E. De Wit</name>
</author>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N. van Doremalen</name>
</author>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D. Falzarano</name>
</author>
<author>
<name sortKey="Munster, V J" uniqKey="Munster V">V.J. Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ge, X Y" uniqKey="Ge X">X.Y. Ge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graham, R L" uniqKey="Graham R">R.L. Graham</name>
</author>
<author>
<name sortKey="Sparks, J S" uniqKey="Sparks J">J.S. Sparks</name>
</author>
<author>
<name sortKey="Eckerle, L D" uniqKey="Eckerle L">L.D. Eckerle</name>
</author>
<author>
<name sortKey="Sims, A C" uniqKey="Sims A">A.C. Sims</name>
</author>
<author>
<name sortKey="Denison, M R" uniqKey="Denison M">M.R. Denison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hurst, K R" uniqKey="Hurst K">K.R. Hurst</name>
</author>
<author>
<name sortKey="Koetzner, C A" uniqKey="Koetzner C">C.A. Koetzner</name>
</author>
<author>
<name sortKey="Masters, P S" uniqKey="Masters P">P.S. Masters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hurst, Kelley R" uniqKey="Hurst K">Kelley R. Hurst</name>
</author>
<author>
<name sortKey="Koetzner, Cheri A" uniqKey="Koetzner C">Cheri A. Koetzner</name>
</author>
<author>
<name sortKey="Paul, S" uniqKey="Paul S">S. Paul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirchdoerfer, R N" uniqKey="Kirchdoerfer R">R.N. Kirchdoerfer</name>
</author>
<author>
<name sortKey="Ward, A B" uniqKey="Ward A">A.B. Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koyama, T" uniqKey="Koyama T">T. Koyama</name>
</author>
<author>
<name sortKey="Platt, D" uniqKey="Platt D">D. Platt</name>
</author>
<author>
<name sortKey="Parida, L" uniqKey="Parida L">L. Parida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Farzan, M" uniqKey="Farzan M">M. Farzan</name>
</author>
<author>
<name sortKey="Harrison, S C" uniqKey="Harrison S">S.C. Harrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
<author>
<name sortKey="Guan, X" uniqKey="Guan X">X. Guan</name>
</author>
<author>
<name sortKey="Wu, P" uniqKey="Wu P">P. Wu</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L. Zhou</name>
</author>
<author>
<name sortKey="Tong, Y" uniqKey="Tong Y">Y. Tong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, R" uniqKey="Lu R">R. Lu</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X. Zhao</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niemeyer, D" uniqKey="Niemeyer D">D. Niemeyer</name>
</author>
<author>
<name sortKey="Mosbauer, K" uniqKey="Mosbauer K">K. Mosbauer</name>
</author>
<author>
<name sortKey="Klein, E M" uniqKey="Klein E">E.M. Klein</name>
</author>
<author>
<name sortKey="Sieberg, A" uniqKey="Sieberg A">A. Sieberg</name>
</author>
<author>
<name sortKey="Mettelman, R C" uniqKey="Mettelman R">R.C. Mettelman</name>
</author>
<author>
<name sortKey="Mielech, A M" uniqKey="Mielech A">A.M. Mielech</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oostra, M" uniqKey="Oostra M">M. Oostra</name>
</author>
<author>
<name sortKey="De Haan, C A" uniqKey="De Haan C">C.A. de Haan</name>
</author>
<author>
<name sortKey="Rottier, P J" uniqKey="Rottier P">P.J. Rottier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozaslan, M" uniqKey="Ozaslan M">M. Ozaslan</name>
</author>
<author>
<name sortKey="Safdar, M" uniqKey="Safdar M">M. Safdar</name>
</author>
<author>
<name sortKey="Kilic, I H" uniqKey="Kilic I">I.H. Kilic</name>
</author>
<author>
<name sortKey="Khailany, R A" uniqKey="Khailany R">R.A. Khailany</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Payne, D C" uniqKey="Payne D">D.C. Payne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rice, P" uniqKey="Rice P">P. Rice</name>
</author>
<author>
<name sortKey="Longden, I" uniqKey="Longden I">I. Longden</name>
</author>
<author>
<name sortKey="Bleasby, A" uniqKey="Bleasby A">A. Bleasby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sawicki, S G" uniqKey="Sawicki S">S.G. Sawicki</name>
</author>
<author>
<name sortKey="Sawicki, D L" uniqKey="Sawicki D">D.L. Sawicki</name>
</author>
<author>
<name sortKey="Younker, D" uniqKey="Younker D">D. Younker</name>
</author>
<author>
<name sortKey="Meyer, Y" uniqKey="Meyer Y">Y. Meyer</name>
</author>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V. Thiel</name>
</author>
<author>
<name sortKey="Stokes, H" uniqKey="Stokes H">H. Stokes</name>
</author>
<author>
<name sortKey="Siddell, S G" uniqKey="Siddell S">S.G. Siddell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, C S" uniqKey="Shi C">C.S. Shi</name>
</author>
<author>
<name sortKey="Nabar, N R" uniqKey="Nabar N">N.R. Nabar</name>
</author>
<author>
<name sortKey="Huang, N N" uniqKey="Huang N">N.N. Huang</name>
</author>
<author>
<name sortKey="Kehrl, J H" uniqKey="Kehrl J">J.H. Kehrl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Meer, Y" uniqKey="Van Der Meer Y">Y. Van der Meer</name>
</author>
<author>
<name sortKey="Van Tol, H" uniqKey="Van Tol H">H. van Tol</name>
</author>
<author>
<name sortKey="Locker, J K" uniqKey="Locker J">J.K. Locker</name>
</author>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E.J. Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wan, Y" uniqKey="Wan Y">Y. Wan</name>
</author>
<author>
<name sortKey="Shang, J" uniqKey="Shang J">J. Shang</name>
</author>
<author>
<name sortKey="Graham, R" uniqKey="Graham R">R. Graham</name>
</author>
<author>
<name sortKey="Baric, R S" uniqKey="Baric R">R.S. Baric</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, X L" uniqKey="Yang X">X.L. Yang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Gene Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Gene Rep</journal-id>
<journal-title-group>
<journal-title>Gene Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2452-0144</issn>
<publisher>
<publisher-name>Elsevier Inc.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32300673</article-id>
<article-id pub-id-type="pmc">7161481</article-id>
<article-id pub-id-type="publisher-id">S2452-0144(20)30096-0</article-id>
<article-id pub-id-type="doi">10.1016/j.genrep.2020.100682</article-id>
<article-id pub-id-type="publisher-id">100682</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Genomic characterization of a novel SARS-CoV-2</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au0005">
<name>
<surname>Khailany</surname>
<given-names>Rozhgar A.</given-names>
</name>
<email>rozhgar.mohammed@su.edu.krd</email>
<xref rid="af0005" ref-type="aff">a</xref>
<xref rid="cr0005" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author" id="au0010">
<name>
<surname>Safdar</surname>
<given-names>Muhamad</given-names>
</name>
<xref rid="af0010" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author" id="au0015">
<name>
<surname>Ozaslan</surname>
<given-names>Mehmet</given-names>
</name>
<xref rid="af0015" ref-type="aff">c</xref>
</contrib>
</contrib-group>
<aff id="af0005">
<label>a</label>
Department of Biology, College of Science, University of Salahaddin-Erbil, Iraq</aff>
<aff id="af0010">
<label>b</label>
Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan</aff>
<aff id="af0015">
<label>c</label>
Department of Biology, Gaziantep University, 27310 Gaziantep, Turkey</aff>
<author-notes>
<corresp id="cr0005">
<label></label>
Corresponding author at: Department of Biology, College of Science, University of Salahaddin-Erbil, Erbil 44001, Iraq.
<email>rozhgar.mohammed@su.edu.krd</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>16</day>
<month>4</month>
<year>2020</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<month>6</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="epub">
<day>16</day>
<month>4</month>
<year>2020</year>
</pub-date>
<volume>19</volume>
<fpage>100682</fpage>
<lpage>100682</lpage>
<history>
<date date-type="received">
<day>26</day>
<month>3</month>
<year>2020</year>
</date>
<date date-type="rev-recd">
<day>5</day>
<month>4</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>13</day>
<month>4</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 Elsevier Inc. All rights reserved.</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>Elsevier Inc.</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract id="ab0005">
<p>A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associated with human to human transmission and extreme human sickness has been as of late announced from the city of Wuhan in China. Our objectives were to mutation analysis between recently reported genomes at various times and locations and to characterize the genomic structure of SARS-CoV-2 using bioinformatics programs. Information on the variation of viruses is of considerable medical and biological impacts on the prevention, diagnosis, and therapy of infectious diseases. To understand the genomic structure and variations of the SARS-CoV-2. The study analyzed 95 SARS-CoV-2 complete genome sequences available in GenBank, National MicrobiologyData Center (NMDC) and NGDC Genome Warehouse from December-2019 until 05 of April-2020. The genomic signature analysis demonstrates that a strong association between the time of sample collection, location of sample and accumulation of genetic diversity. We found 116 mutations, the three most common mutations were 8782C>T in ORF1ab gene, 28144T>C in ORF8 gene and 29095C>T in the N gene. The mutations might affect the severity and spread of the SARS-CoV-2. The finding heavily supports an intense requirement for additional prompt, inclusive investigations that combine genomic detail, epidemiological information and graph records of the clinical features of patients with COVID-19.</p>
</abstract>
<abstract abstract-type="author-highlights" id="ab0010">
<title>Highlights</title>
<p>
<list list-type="simple" id="l0005">
<list-item id="li0005">
<label></label>
<p id="p0005">Genomic mutations identification of SARS-CoV-2 in COVID-19 patients</p>
</list-item>
<list-item id="li0010">
<label></label>
<p id="p0010">Genetic variations in recently sequenced SARS-CoV-2</p>
</list-item>
<list-item id="li0015">
<label></label>
<p id="p0015">Most common mutations are three in SARS-CoV-2</p>
</list-item>
</list>
</p>
</abstract>
<kwd-group id="ks0005">
<title>Keywords</title>
<kwd>SARS-CoV-2</kwd>
<kwd>Genomic characterization</kwd>
<kwd>Mutation</kwd>
<kwd>COVID-19</kwd>
</kwd-group>
<kwd-group id="ks0010">
<title>Abbreviations</title>
<kwd>SARS-CoV-2, severe acute respiratory syndrome coronavirus 2</kwd>
<kwd>COVID-19, Coronavirus disease 2019</kwd>
<kwd>NGDC, National Genomics Data Center</kwd>
<kwd>NMDC, National Microbiology Data Center</kwd>
<kwd>WHO, World Health Organization</kwd>
<kwd>EMBOSS, The European Molecular Biology Open Software Suite</kwd>
<kwd>BLAST, Basic Local Alignment Search Tool</kwd>
<kwd>
<italic>UTR</italic>
, Untranslated region</kwd>
<kwd>CDC, Centers of Disease Control and Prevention</kwd>
<kwd>MERS, Middle East Respiratory Syndrome</kwd>
<kwd>NCBI, National Center for Biotechnology Information</kwd>
<kwd>NSP, nonstructural protein</kwd>
<kwd>ORF, Open Reading Frame</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s0005">
<label>1</label>
<title>Introduction</title>
<p id="p0020">The current outbreak of coronavirus disease (COVID-19) that was first reported from Wuhan, China, in December 2019. This epidemic had spread to 206 countries and territories around the world and 2 international conveyances with 1,203,459 confirmed cases, including 64,754 deaths, as of April 05, 2020, so the World Health Organization declared it as a Public Health Emergency of worldwide (
<ext-link ext-link-type="uri" xlink:href="https://www.worldometers.info/coronavirus/" id="ir0005">https://www.worldometers.info/coronavirus/</ext-link>
). Similarly, Middle East respiratory syndrome coronavirus (MERS-CoV) had become a worldwide health concern. MERS-CoV originally reported in 2012 (
<xref rid="bb0020" ref-type="bibr">De Wit et al., 2016</xref>
). It affected more than 2000 people in 27 countries and 4 sub-continents in the Middle East. While the epidemic of SARS affected 26 countries and resulted in more than 8000 cases in 2003 (
<xref rid="bb0020" ref-type="bibr">De Wit et al., 2016</xref>
). Since then, a small number of cases have occurred as a result of laboratory accidents or, possibly, through animal-to-human transmission (Guangdong, China) (
<xref rid="bb0020" ref-type="bibr">De Wit et al., 2016</xref>
).</p>
<p id="p0025">This study analyzed and discussed available published genome until April 05, 2020, for a better understanding of the genomic variation and characterization of a novel coronavirus (COVID-19). This virus is transmitted from person to person via droplet transmission (
<xref rid="bb0060" ref-type="bibr">Li et al., 2020</xref>
;
<xref rid="bb2000" ref-type="bibr">Ozaslan et al., 2020</xref>
). Therefore, the virus is spreading easily in overcrowded areas. Most patients experience only mild to moderate symptoms, such as high body temperature in conjunction with some respiratory symptoms such as cough, sore throat, and headache. Some people may have severe symptoms like pneumonia and acute respiratory distress syndrome (
<xref rid="bb0015" ref-type="bibr">Chen et al., 2020</xref>
). Also, individuals with underlying complications such as heart disease, chronic lung disease, or diabetes potentially display more severe symptoms (
<xref rid="bb0005" ref-type="bibr">Adhikari et al., 2020</xref>
). Preventive measures such as masks, frequent hand washing, staying home when sick, avoid public contact, and quarantines are being recommended for reducing the transmission. To date, no specific antiviral treatment is proven effective, hence, infected people initially rely on symptomatic treatments that showed encouraging profile for blocking the new coronavirus in early clinical trials.</p>
<p id="p0030">Importantly, the genome size of the SARS-CoV-2 varies from 29.8 kb to 29.9 kb and its genome structure followed the specific gene characteristics to known CoVs; the 5′ more than two-thirds of the genome comprises orf1ab encoding orf1abpolyproteins, while the 3′ one third consists of genes encoding structural proteins including surface (S), envelope (E), membrane (M), and nucleocapsid N proteins (
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
). Additionally, the SARS-CoV-2 contains 6 accessory proteins, encoded by ORF3a, ORF6, ORF7a, ORF7b, and ORF8 genes (
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
) (
<xref rid="bb0055" ref-type="bibr">Li et al., 2005</xref>
;
<xref rid="bb0080" ref-type="bibr">Oostra et al., 2007</xref>
).
<fig id="f0005">
<label>Fig. 1</label>
<caption>
<p>Structure of the SARS-CoV-2 genome.</p>
</caption>
<alt-text id="al0005">Fig. 1</alt-text>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
<p id="p0035">Recently, the development of high-throughput sequencing has provided datasets of high-quality, complete genome sequences for viral isolates collected in a relatively unbiased manner, regardless of virulence or other unusual characteristics. Analyses of the genome sequence data combined with large-scale antigenic typing have given insights into the pattern of global spread, the genetic diversity during seasonal epidemics, and the dynamics of subtype evolution. SARS-CoV-2 such as the NCBI Severe acute respiratory syndrome coronavirus 2 database (
<ext-link ext-link-type="uri" xlink:href="http://www.nhc.gov.cn/jkj/s7915/202001/e4e2d5e6f01147e0a8df3f6701d49f33.shtml" id="ir0010">http://www.nhc.gov.cn/jkj/s7915/202001/e4e2d5e6f01147e0a8df3f6701d49f33.shtml</ext-link>
) and NGDC Genome Warehouse (
<ext-link ext-link-type="uri" xlink:href="http://bigd.big.ac.cn/gwh/" id="ir0015">bigd.big.ac.cn/gwh/</ext-link>
) make the genomic information publicly available, together with epidemiological data for the sequenced isolates. The data sharing requires users to agree to collaborate with, and appropriately credit, all data contributors. A notable success of this initiative has been the contribution of countries, such as China, Philippines, and Japan, etc. which have previously been reticent about placing data in the public domain. The WHO also supports the endeavor of rapid publication of all available sequences for coronaviruses and there is hope that comprehensive submission to public databases will soon become a reality.</p>
<p id="p0040">The finding heavily supports an intense requirement for additional prompt, inclusive investigations that combine genomic detail, epidemiological information and graph records of the clinical features of patients with COVID-19 (
<xref rid="bb0085" ref-type="bibr">Payne et al., 2018</xref>
). In the future, mining these resources and establishing a statistical framework based on epidemiological, antigenic, and genetic information could provide further insights into the rules that govern the emergence and establishment of antigenically novel variants and improve the potential for SARS-CoV-2 prevention and control (
<xref rid="bb0025" ref-type="bibr">Ge et al., 2013</xref>
;
<xref rid="bb0115" ref-type="bibr">Yang et al., 2015</xref>
). In this study, we investigated the extent of molecular variation between the recently sequenced genomes of SARS-CoV-2.</p>
</sec>
<sec id="s0010">
<label>2</label>
<title>Methodology</title>
<p id="p0045">We have downloaded 94 publicly available genomes from Genbank up to 12 March. Among 94 genomes, some of the genomes were not used for the analysis due to unusually high variants with gaps. NC_045512 genome sequence was used for reference and the genomic coordinate in this study is based on this reference genome (
<xref rid="bb0065" ref-type="bibr">Lu et al., 2020</xref>
). Therefore, genomic coordinates must be adjusted to compare with previous studies (
<xref rid="bb0050" ref-type="bibr">Koyama et al., 2020</xref>
)</p>
<p id="p0050">Each genome was first aligned to NC_045512 using the EMBOSS needle with a default gap penalty of 10 and an extension penalty of 0.5. Then, differences in comparison with NC_045512 were extracted to create variants (
<xref rid="t0005" ref-type="table">Table 1</xref>
,
<xref rid="t0010" ref-type="table">Table 2</xref>
) (
<xref rid="bb0090" ref-type="bibr">Rice et al., 2000</xref>
). Based on protein annotations, nucleotide level variants were converted into amino acid codon variants for alignments when its location within a gene was identified (
<xref rid="bb0010" ref-type="bibr">Arvestad, 2018</xref>
). Nucleotide mutations in the genomes were revealed.
<table-wrap position="float" id="t0005">
<label>Table 1</label>
<caption>
<p>Coding mutation list detected in SARS-CoV-2 genomes.</p>
</caption>
<alt-text id="al0010">Table 1</alt-text>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Accession</th>
<th>Location-date</th>
<th>Nucleotide variation</th>
<th>Gene</th>
<th>Amino acid change</th>
<th>Mutation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT240479</td>
<td>04-03-2020/Pakistan
<break></break>
Gilgit</td>
<td>1 1497G>A</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN996527</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>21316G>A</td>
<td>Orf1ab</td>
<td>D7018N</td>
<td>Missense</td>
</tr>
<tr>
<td>MN996527</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>24292A>G</td>
<td>S</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC528232</td>
<td>10/Feb/2020-Japan</td>
<td>11083T>G</td>
<td>Orf1ab</td>
<td>L3606F</td>
<td>Missense</td>
</tr>
<tr>
<td>LC528232</td>
<td>10/Feb/2020-Japan</td>
<td>29642C>T</td>
<td>ORF10</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LR757995</td>
<td>05/Jan/2020-China
<break></break>
Wuhan</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>LR757998</td>
<td>12/26/2019-China
<break></break>
Wuhan</td>
<td>6968C>A</td>
<td>Orf1ab</td>
<td>L2235I</td>
<td>Missense</td>
</tr>
<tr>
<td>LR757998</td>
<td>12/26/2019-China
<break></break>
Wuhan</td>
<td>11749T>A</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN938384</td>
<td>1/10/2020-China
<break></break>
Shenzhen</td>
<td>8782C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN938384</td>
<td>1/10/2020-China
<break></break>
Shenzhen</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>MN938384</td>
<td>1/10/2020-China
<break></break>
Shenzhen</td>
<td>29095C>T</td>
<td>N</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN975262</td>
<td>11/Jan/2020-China</td>
<td>8782C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN975262</td>
<td>11/Jan/2020-China</td>
<td>9534C>T</td>
<td>Orf1ab</td>
<td>T3090I</td>
<td>Missense</td>
</tr>
<tr>
<td>MN975262</td>
<td>11/Jan/2020-China</td>
<td>29095C>T</td>
<td>N</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN975262</td>
<td>11/Jan/2020-China</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>MN975262</td>
<td>11/Jan/2020-China</td>
<td>8782C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN985325</td>
<td>19/Jan/2020-USA
<break></break>
WA</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>MN994467</td>
<td>23/Jan/2020-USA
<break></break>
CA</td>
<td>1548G>A</td>
<td>Orf1ab</td>
<td>S428N</td>
<td>Missense</td>
</tr>
<tr>
<td>MN994467</td>
<td>23/Jan/2020-USA
<break></break>
CA</td>
<td>8782C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN994467</td>
<td>23/Jan/2020-USA
<break></break>
CA</td>
<td>26729T>C</td>
<td>M</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN994467</td>
<td>23/Jan/2020-USA
<break></break>
CA</td>
<td>28077G>C</td>
<td>ORF8</td>
<td>V62L</td>
<td>Missense</td>
</tr>
<tr>
<td>MN994467</td>
<td>23/Jan/2020-USA
<break></break>
CA</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>MN994467</td>
<td>23/Jan/2020-USA
<break></break>
CA</td>
<td>28792A>C</td>
<td>N</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN994467</td>
<td>23/Jan/2020-USA
<break></break>
CA</td>
<td>1912C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>GWHABKF00000001</td>
<td>23/Dec/2019-China
<break></break>
Wuhan</td>
<td>3778A>G</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>GWHABKF00000001</td>
<td>23/Dec/2019-China
<break></break>
Wuhan</td>
<td>8388A>G</td>
<td>Orf1ab</td>
<td>N2708S</td>
<td>Missense</td>
</tr>
<tr>
<td>GWHABKF00000001</td>
<td>23/Dec/2019-China
<break></break>
Wuhan</td>
<td>8987T>A</td>
<td>Orf1ab</td>
<td>F2908I</td>
<td>Missense</td>
</tr>
<tr>
<td>GWHABKK00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>24325A>G</td>
<td>S</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>GWHABKK00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>21316G>A</td>
<td>Orf1ab</td>
<td>D7018N</td>
<td>Missense</td>
</tr>
<tr>
<td>GWHABKH00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>6996T>C</td>
<td>Orf1ab</td>
<td>I2244T</td>
<td>Missense</td>
</tr>
<tr>
<td>GWHABKJ00000001</td>
<td>01/Jan/2019-China
<break></break>
Wuhan</td>
<td>7866G>T</td>
<td>Orf1ab</td>
<td>G2534V</td>
<td>Missense</td>
</tr>
<tr>
<td>GWHABKM00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>21137A>G</td>
<td>Orf1ab</td>
<td>K6958R</td>
<td>Missense</td>
</tr>
<tr>
<td>GWHABKM00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>7016G>A</td>
<td>Orf1ab</td>
<td>G2251S</td>
<td>Missense</td>
</tr>
<tr>
<td>GWHABKO00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>8001A>C</td>
<td>Orf1ab</td>
<td>D2579A</td>
<td>Missense</td>
</tr>
<tr>
<td>GWHABKO00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>9534C>T</td>
<td>Orf1ab</td>
<td>T3090I</td>
<td>Missense</td>
</tr>
<tr>
<td>MT188341</td>
<td>05/Mar/2020-USA
<break></break>
MN</td>
<td>6035A>G</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT188341</td>
<td>05/Mar/2020-USA
<break></break>
MN</td>
<td>8782C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT188341</td>
<td>05/Mar/2020-USA
<break></break>
MN</td>
<td>16467A>G</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT188341</td>
<td>05/Mar/2020-USA
<break></break>
MN</td>
<td>18060C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT188341</td>
<td>05/Mar/2020-USA
<break></break>
MN</td>
<td>21386insT</td>
<td>Orf1ab</td>
<td></td>
<td>Insertion</td>
</tr>
<tr>
<td>MT188341</td>
<td>05/Mar/2020-USA
<break></break>
MN</td>
<td>21388-21390insTT</td>
<td>Orf1ab</td>
<td></td>
<td>Insertion</td>
</tr>
<tr>
<td>MT188341</td>
<td>05/Mar/2020-USA
<break></break>
MN</td>
<td>23185C>T</td>
<td>S</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT188341</td>
<td>05/Mar/2020-USA
<break></break>
MN</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>MT188339</td>
<td>09/Mar/2020-USA
<break></break>
MN</td>
<td>8782C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT188339</td>
<td>09/Mar/2020-USA
<break></break>
MN</td>
<td>17423A>G</td>
<td>Orf1ab</td>
<td>Y5720C</td>
<td>Missense</td>
</tr>
<tr>
<td>MT188339</td>
<td>09/Mar/2020-USA
<break></break>
MN</td>
<td>18060C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT188339</td>
<td>09/Mar/2020-USA
<break></break>
MN</td>
<td>21386C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT188339</td>
<td>09/Mar/2020-USA
<break></break>
MN</td>
<td>22432C>T</td>
<td>S</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT188339</td>
<td>09/Mar/2020-USA
<break></break>
MN</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>MT121215</td>
<td>02/Feb/2020-China
<break></break>
Shanghai</td>
<td>6031C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT123290</td>
<td>05/Feb/2020-China
<break></break>
Guangzhou</td>
<td>15597T>C</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT123290</td>
<td>05/Feb/2020-China
<break></break>
Guangzhou</td>
<td>29095C>T</td>
<td>N</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT126808</td>
<td>2/28/2020-Brazil</td>
<td>26144G>T</td>
<td>ORF3a</td>
<td>G251V</td>
<td>Missense</td>
</tr>
<tr>
<td>MT066175</td>
<td>31/Jan/2020-Taiwan</td>
<td>8782C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT066175</td>
<td>31/Jan/2020-Taiwan</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>MT093571</td>
<td>07/Feb/2020-Sweden</td>
<td>13225C>G</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT093571</td>
<td>07/Feb/2020-Sweden</td>
<td>13226T>C</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT093571</td>
<td>07/Feb/2020-Sweden</td>
<td>17423A>G</td>
<td>Orf1ab</td>
<td>Y5720C</td>
<td>Missense</td>
</tr>
<tr>
<td>MT093571</td>
<td>07/Feb/2020-Sweden</td>
<td>23952T>G</td>
<td>S</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MT066156</td>
<td>30/Jan/2020-Italy</td>
<td>11083T>G</td>
<td>Orf1ab</td>
<td>L3606F</td>
<td>Missense</td>
</tr>
<tr>
<td>MT066156</td>
<td>30/Jan/2020-Italy</td>
<td>26144G>T</td>
<td>ORF3a</td>
<td>G251V</td>
<td>Missense</td>
</tr>
<tr>
<td>LC522975</td>
<td>20/JAN/2020-JAPAN</td>
<td>8782C>T</td>
<td>Orf1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522975</td>
<td>20/JAN/2020-JAPAN</td>
<td>29095C>T</td>
<td>N</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522975</td>
<td>20/JAN/2020-JAPAN</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>LC522975</td>
<td>20/JAN/2020-JAPAN</td>
<td>2662C>T</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522974</td>
<td>20/JAN/2020-JAPAN</td>
<td>8782C>T</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522974</td>
<td>20/JAN/2020-JAPAN</td>
<td>29095C>T</td>
<td>N</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522974</td>
<td>20/JAN/2020-JAPAN</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>LC522974</td>
<td>20/JAN/2020-JAPAN</td>
<td>2662C>T</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522973</td>
<td>20/JAN/2020-JAPAN</td>
<td>8782C>T</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522973</td>
<td>20/JAN/2020-JAPAN</td>
<td>29095C>T</td>
<td>N</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522973</td>
<td>20/JAN/2020-JAPAN</td>
<td>3792C>T</td>
<td>ORF1ab</td>
<td>A1176V</td>
<td>Missense</td>
</tr>
<tr>
<td>LC522973</td>
<td>20/JAN/2020-JAPAN</td>
<td>29095C>T</td>
<td>N</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522973</td>
<td>20/JAN/2020-JAPAN</td>
<td>2662C>T</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC522973</td>
<td>20/JAN/2020-JAPAN</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>LC522972</td>
<td>20/JAN/2020-JAPAN</td>
<td>29303C>T</td>
<td>N</td>
<td>P344S</td>
<td>Missense</td>
</tr>
<tr>
<td>LC522972</td>
<td>20/JAN/2020-JAPAN</td>
<td>25810C>G</td>
<td>ORF3a</td>
<td>L140V</td>
<td>Missense</td>
</tr>
<tr>
<td>LC522972</td>
<td>20/JAN/2020-JAPAN</td>
<td>11557G>T</td>
<td>ORF1ab</td>
<td>E3764D</td>
<td>Missense</td>
</tr>
<tr>
<td>LC522972</td>
<td>20/JAN/2020-JAPAN</td>
<td>15324C>T</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC521925</td>
<td>21/JAN/2020-JAPAN</td>
<td>1912C>T</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>LC521925</td>
<td>21/JAN/2020-JAPAN</td>
<td>18512C>T</td>
<td>ORF1ab</td>
<td>P6083L</td>
<td>Missense</td>
</tr>
<tr>
<td>LC521925</td>
<td>21/JAN/2020-JAPAN</td>
<td>359_382del</td>
<td>ORF1ab</td>
<td>G32_L39del</td>
<td>Deletion</td>
</tr>
<tr>
<td>MN988713</td>
<td>21/JAN/2020-USA
<break></break>
Chicago</td>
<td>24034C>T</td>
<td>S</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN988713</td>
<td>21/JAN/2020-USA
<break></break>
Chicago</td>
<td>26729T>C</td>
<td>M</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN988713</td>
<td>21/JAN/2020-USA
<break></break>
Chicago</td>
<td>8782C>T</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN988713</td>
<td>21/JAN/2020-USA
<break></break>
Chicago</td>
<td>490T>A</td>
<td>ORF1ab</td>
<td>D75E</td>
<td>Missense</td>
</tr>
<tr>
<td>MN988713</td>
<td>21/JAN/2020-USA
<break></break>
Chicago</td>
<td>3177C>T</td>
<td>ORF1ab</td>
<td>P971L</td>
<td>Missense</td>
</tr>
<tr>
<td>MN988713</td>
<td>21/JAN/2020-USA
<break></break>
Chicago</td>
<td>28854C>T</td>
<td>N</td>
<td>S194L</td>
<td>Missense</td>
</tr>
<tr>
<td>MN988713</td>
<td>21/JAN/2020-USA
<break></break>
Chicago</td>
<td>28077G>C</td>
<td>ORF8</td>
<td>V62L</td>
<td>Missense</td>
</tr>
<tr>
<td>MN988713</td>
<td>21/JAN/2020-USA
<break></break>
Chicago</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>MN997409</td>
<td>21/JAN/2020-USA
<break></break>
Arizona</td>
<td>8782C>T</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN997409</td>
<td>21/JAN/2020-USA
<break></break>
Arizona</td>
<td>29095C>T</td>
<td>N</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>MN997409</td>
<td>21/JAN/2020-USA
<break></break>
Arizona</td>
<td>11083G>T</td>
<td>ORF1ab</td>
<td>L3606F</td>
<td>Missense</td>
</tr>
<tr>
<td>MN997409</td>
<td>21/JAN/2020-USA
<break></break>
Arizona</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
<tr>
<td>MT072688</td>
<td>26/JAN/2020-USA: Massachussetts</td>
<td>24034C>T</td>
<td>S</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>NMDC60013002-09</td>
<td>01/JAN/2019-China
<break></break>
Wuhan</td>
<td>27493C>T</td>
<td>ORF7a</td>
<td>P34S</td>
<td>Missense</td>
</tr>
<tr>
<td>NMDC60013002-09</td>
<td>01/JAN/2019-China
<break></break>
Wuhan</td>
<td>28253C>T</td>
<td>ORF8</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>NMDC60013002-10</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>20679G>A</td>
<td>ORF1ab</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>NMDC60013002-01</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>11764T>A</td>
<td>ORF1ab</td>
<td>N3833K</td>
<td>Missense</td>
</tr>
<tr>
<td>NMDC60013002-06</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>24325A>G</td>
<td>S</td>
<td></td>
<td>Synonymous mutation</td>
</tr>
<tr>
<td>NMDC60013002-04</td>
<td>05/Dec/2019-China
<break></break>
Wuhan</td>
<td>28144T>C</td>
<td>ORF8</td>
<td>L84S</td>
<td>Missense</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap position="float" id="t0010">
<label>Table 2</label>
<caption>
<p>Non-coding mutation list detected in SARS-CoV-2 genomes.</p>
</caption>
<alt-text id="al0015">Table 2</alt-text>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Accession</th>
<th>Location-date</th>
<th>Nucleotide variation</th>
<th>UTR type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT240479</td>
<td>04-03-2020/Pakistan
<break></break>
Gilgit</td>
<td>241C>T</td>
<td>5 UTR</td>
</tr>
<tr>
<td>MT123290</td>
<td>05/Feb/2020-China
<break></break>
Guangzhou</td>
<td>4A>T</td>
<td>5 UTR</td>
</tr>
<tr>
<td>MT007544</td>
<td>25/Jan/2020-Australia
<break></break>
Victoria</td>
<td>29749-29759del</td>
<td>3 UTR</td>
</tr>
<tr>
<td>NMDC60013002-07</td>
<td>07/JAN/2019-China
<break></break>
Wuhan</td>
<td>29869del</td>
<td>3 UTR</td>
</tr>
<tr>
<td>NMDC60013002-04</td>
<td>05/Dec/2019-China
<break></break>
Wuhan</td>
<td>29856T>A</td>
<td>3 UTR</td>
</tr>
<tr>
<td>NMDC60013002-04</td>
<td>05/Dec/2019-China
<break></break>
Wuhan</td>
<td>29854C>T</td>
<td>3 UTR</td>
</tr>
<tr>
<td>NMDC60013002-04</td>
<td>05/Dec/2019-China
<break></break>
Wuhan</td>
<td>16C>T</td>
<td>5 UTR</td>
</tr>
<tr>
<td>MT049951</td>
<td>17/Jan/2019-China
<break></break>
Yunnan</td>
<td>75C>A</td>
<td>5 UTR</td>
</tr>
<tr>
<td>LC522975</td>
<td>20/JAN/2020-JAPAN</td>
<td>29705G>T</td>
<td>3 UTR</td>
</tr>
<tr>
<td>GWHABKG00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>124G>A</td>
<td>5 UTR</td>
</tr>
<tr>
<td>GWHABKG00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>120T>C</td>
<td>5 UTR</td>
</tr>
<tr>
<td>GWHABKG00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>119C>G</td>
<td>5 UTR</td>
</tr>
<tr>
<td>GWHABKG00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>112T>G</td>
<td>5 UTR</td>
</tr>
<tr>
<td>GWHABKG00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>111T>C</td>
<td>5 UTR</td>
</tr>
<tr>
<td>GWHABKG00000001</td>
<td>30/Dec/2019-China
<break></break>
Wuhan</td>
<td>104T>A</td>
<td>5 UTR</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="s0015">
<label>3</label>
<title>Results</title>
<p id="p0055">A hundred fifty-six total variants were found and 116 unique variants as shown in
<xref rid="t0005" ref-type="table">Table 1</xref>
,
<xref rid="t0010" ref-type="table">Table 2</xref>
. Among the 95 genomes we analyzed, 24 samples did not exhibit any variants except for missing starts and end base pairs. The distinct variants consist of 46 missense, 52 synonymous, 2 insertion, 1 deletion and 14 non-coding alleles in
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
. The most common variants were 8782C>T(ORF1ab) in 13 samples, 28144T>C (ORF8) in 14 samples and 29095C>T (N) in 8samples. The occurrences of 8782C>T and 28144T>C coincide. 29095C>T is found in the subset of them. Both 8782C>T and 29095C>T are synonymous; however, 28144T>C causes amino acid to change L84S in ORF8. Notably, most of 8782C>T and 28144T>Cvariant substrains are found outside of Wuhan. For the 46 missense variants, 24 variants are found in ORF1ab, which is the longest ORF occupying 2/3 of the entire genome. ORF1ab is cleaved into many nonstructural proteins (NSP1-NSP16). Among NSP's, NSP3 has more variants in the analyzed samples. All noncoding mutations are located in 5′ UTR or 3′ UTR regions. In terms of base changes, the most frequently observed one is C>T as shown in
<xref rid="t0005" ref-type="table">Table 1</xref>
,
<xref rid="t0010" ref-type="table">Table 2</xref>
.</p>
</sec>
<sec id="s0020">
<label>4</label>
<title>Discussion</title>
<p id="p0060">The genetic information of any life is protected in its genome, and annotation is the initial step to interpret the sequence. The length of the SARS-CoV genome is over 30 Kb, while just a few coding genes appear not to accord with the general properties for the viral genome and the minimum grouping of hereditary data. In addition to these, it may have some non-structural proteins but lacking data at one place is needed. The absence probably results from their short existing-time before decomposition. In this study, we worked to find the extent of molecular variation between the recently sequenced genomes of SARS-CoV-2.</p>
<p id="p0065">Numerous investigations have depicted that ORFs and ACE2 genes play a key role during novel coronavirus disease (
<xref rid="bb0050" ref-type="bibr">Koyama et al., 2020</xref>
;
<xref rid="bb0045" ref-type="bibr">Kirchdoerfer and Ward, 2019</xref>
;
<xref rid="bb0105" ref-type="bibr">Van der Meer et al., 1998</xref>
;
<xref rid="bb0110" ref-type="bibr">Wan et al., 2020</xref>
). So in our study, 156 total variants were found and 116 unique variants (
<xref rid="t0005" ref-type="table">Table 1</xref>
,
<xref rid="t0010" ref-type="table">Table 2</xref>
). Among the 95 genomes we analyzed, 24 samples did not exhibit any variants except for missing starts and end base pairs. Additionally, the distinct variants consist of 46 missense, 52 synonymous, 2 insertions, 1 deletion, 14 non-coding alleles (
<xref rid="t0005" ref-type="table">Table 1</xref>
,
<xref rid="t0010" ref-type="table">Table 2</xref>
). Most common variants were 8782C>T(ORF1ab) in 13 samples, 28144T>C (ORF8) in 14 samples and 29095C>T (N) in 8 samples.The occurrences of 8782C>T and 28144T>C coincide. 29095C>T is found in the subset of them. Both 8782C>T and 29095C>T are synonymous; however, 28144T>C causes amino acid to change L84S in ORF8. It is notable that most of 8782C>T and 28144T>C variant substrains are found outside of Wuhan. For the 46 missense variants, 24 variants are found in ORF1ab, which is the longest ORF occupying 2/3 of the entire genome. ORF1ab is cleaved into many nonstructural proteins (NSP1-NSP16). Among NSP's, NSP3 has more variants in the analyzed samples. All noncoding mutations are located in 3′UTR or 5′UTR. In terms of base changes, the most frequently observed one is C>T (
<xref rid="t0005" ref-type="table">Table 1</xref>
,
<xref rid="t0010" ref-type="table">Table 2</xref>
).</p>
<p id="p0070">The replicase enzyme is displayed as two polyproteins (ORF1a and ORF1ab), which are prepared into 12 nonstructural proteins by three viral proteases (
<xref rid="bb0105" ref-type="bibr">Van der Meer et al., 1998</xref>
). This ORF1ab polyprotein includes the nsps 1–3 proteins. This area of ORF1ab is the most important factor among coronaviruses (
<xref rid="bb0110" ref-type="bibr">Wan et al., 2020</xref>
). Many researchers found the relationship between ORFs with COVID-19 i.e.8782C>T(ORF1ab) and 28144T>C (ORF8) are available among genomic databases (
<xref rid="bb0045" ref-type="bibr">Kirchdoerfer and Ward, 2019</xref>
;
<xref rid="bb0050" ref-type="bibr">Koyama et al., 2020</xref>
). Hence, it will be clinically significant to break down the biological function of the particular protein ORF1ab in SARS-CoV-2.</p>
<p id="p0075">Orf8 protein of SARS-CoV-2 doesn't contain a known useful motif or region. A total motif VLVVL (amino corrosive 75–79) has been found in SARS-CoV orf8b which was appeared to trigger intracellular stress pathways and enact NOD-like receptor family pyrin region containing-3 (NLRP3) (
<xref rid="bb0100" ref-type="bibr">Shi et al., 2019</xref>
). Moreover, multiple arrangements with different coronavirus ORF8 sequences propose that L84 related to 28144T>C (L84S) isn't preserved (
<xref rid="bb0050" ref-type="bibr">Koyama et al., 2020</xref>
). Thusly, it will be critical to examine the biological function of the particular protein (orf8) in SARS-CoV-2.</p>
<p id="p0080">ORF10 is a short protein or peptide of length 38 deposits. Koyama et al. depicted that COVID-19 is ORF10 which doesn't have any comparative proteins in the NCBI repository. This one of a kind protein can be used to distinguish the infection more rapidly than PCR based strategies (
<xref rid="bb0050" ref-type="bibr">Koyama et al., 2020</xref>
), but the further characterization of this protein is strongly required.</p>
<p id="p0085">Another study demonstrated that NCBI had displayed new annotations for orf1ab as of late. NSP6 is the main contrast and it is considered as a putative protein (
<xref rid="bb0050" ref-type="bibr">Koyama et al., 2020</xref>
). So, they held the NSP annotations. They further referenced that 12 remarkable variations in NSP3 protein in ORF1ab. Thus concluded that there was a basic connection between the nsp3 association and the inception of coronavirus infection (
<xref rid="bb0035" ref-type="bibr">Hurst et al., 2013a</xref>
). Besides, they investigated that NSP3 contains the papain-like protease and is regarded as significant for SARS infection (
<xref rid="bb0075" ref-type="bibr">Niemeyer et al., 2018</xref>
). Variations found in subjects began from Wuhan are situated in either TM1 or Y space which is profoundly saved (
<xref rid="bb0035" ref-type="bibr">Hurst et al., 2013a</xref>
,
<xref rid="bb0040" ref-type="bibr">Hurst et al., 2013b</xref>
).</p>
<p id="p0090">Sawicki et al. performed sequencing of ORF1 from a huge available data that was established in labs (
<xref rid="bb0095" ref-type="bibr">Sawicki et al., 2005</xref>
). The report distinguished single point transformations coming from nonsynonymous substitutions in nsps 4, 5, 10, 12, 14 and 16. The collective outcomes recommend that the ORF1b nsp 12, 14 and 16 proteins characterize particular cistrons, while the distorted ORF1a proteins nsps 4, 5, and 10 form a compartment together at the location of the coding sequence of ORF1ab (
<xref rid="bb0030" ref-type="bibr">Graham et al., 2008</xref>
). Notably, of the eight announced mutations in MHV, seven of the influenced amino acid deposits are correlated with SARS-CoV (
<xref rid="bb0030" ref-type="bibr">Graham et al., 2008</xref>
). This methodology may permit the determination of phenotypic travelers that will distinguish by protein interactions. Also, it will permit the progressions to be acquainted in SARS-CoV with deciding whether the ts phenotype can be reproduced in that foundation, with the chance of quickly building up a board of SARS-CoV. Curiously, not only is the slow-growth branch dominated by travelers, but the COVID-19 lineages appear to be phylogenetically related to each other, suggesting an exposure point for these individuals that are distinct from the rest of the population.</p>
</sec>
<sec id="s0025">
<label>5</label>
<title>Conclusion</title>
<p id="p0095">The fast increment of cases is giving more genomes that may give some visibility and proof of populace structure, especially of the chance of various presentations of COVID-19 into the human population. A comprehension of the biological reservoirs conveying these infections, and how the course to introduce has been carrying them into contact with human beings will be critical to comprehend future risks for novel diseases. This study showed how the disease spread among the travelers. This fight against COVID-19 will be a long one until we develop vaccines or effective treatments. However, we believe that collecting and sharing knowledge on variants will be effective. We should continue to be vigilant for the emergence of new variants or substrains and data should be gathered at one place for better understanding.</p>
</sec>
<sec id="s0030">
<title>CRediT authorship contribution statement</title>
<p id="p0100">
<bold>Rozhgar A. Khailany:</bold>
Conceptualization, Methodology, Software, Validation, Visualization, Writing - original draft, Writing - review & editing.
<bold>Muhamad Safdar:</bold>
Conceptualization, Visualization, Writing - original draft, Writing - review & editing.
<bold>Mehmet Ozaslan:</bold>
Conceptualization, Supervision, Visualization, Writing - review & editing. </p>
</sec>
<sec sec-type="COI-statement">
<title>Declaration of competing interest</title>
<p id="p0110">The authors declare that they have no competing interests.</p>
</sec>
</body>
<back>
<ref-list id="bi0005">
<title>References</title>
<ref id="bb0005">
<element-citation publication-type="journal" id="rf0005">
<person-group person-group-type="author">
<name>
<surname>Adhikari</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review</article-title>
<source>Infect Dis Poverty</source>
<volume>9</volume>
<year>2020</year>
<fpage>29</fpage>
<pub-id pub-id-type="pmid">32183901</pub-id>
</element-citation>
</ref>
<ref id="bb0010">
<element-citation publication-type="journal" id="rf0010">
<person-group person-group-type="author">
<name>
<surname>Arvestad</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>alv: a console-based viewer for molecular sequence alignments</article-title>
<source>Journal of Open Source Software</source>
<volume>3</volume>
<issue>31</issue>
<year>2018</year>
<fpage>955</fpage>
</element-citation>
</ref>
<ref id="bb0015">
<element-citation publication-type="journal" id="rf0015">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Qu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study</article-title>
<source>Lancet</source>
<volume>395</volume>
<year>2020</year>
<fpage>507</fpage>
<lpage>513</lpage>
<pub-id pub-id-type="pmid">32007143</pub-id>
</element-citation>
</ref>
<ref id="bb0020">
<element-citation publication-type="journal" id="rf0020">
<person-group person-group-type="author">
<name>
<surname>De Wit</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>van Doremalen</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Falzarano</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Munster</surname>
<given-names>V.J.</given-names>
</name>
</person-group>
<article-title>SARS and MERS: recent insights into emerging coronaviruses</article-title>
<source>Nat Rev Microbiol</source>
<volume>14</volume>
<year>2016</year>
<fpage>523</fpage>
<lpage>534</lpage>
<pub-id pub-id-type="pmid">27344959</pub-id>
</element-citation>
</ref>
<ref id="bb0025">
<element-citation publication-type="journal" id="rf0025">
<person-group person-group-type="author">
<name>
<surname>Ge</surname>
<given-names>X.Y.</given-names>
</name>
</person-group>
<article-title>Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor</article-title>
<source>Nature</source>
<volume>503</volume>
<year>2013</year>
<fpage>535</fpage>
<lpage>538</lpage>
<pub-id pub-id-type="pmid">24172901</pub-id>
</element-citation>
</ref>
<ref id="bb0030">
<element-citation publication-type="journal" id="rf0030">
<person-group person-group-type="author">
<name>
<surname>Graham</surname>
<given-names>R.L.</given-names>
</name>
<name>
<surname>Sparks</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Eckerle</surname>
<given-names>L.D.</given-names>
</name>
<name>
<surname>Sims</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Denison</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>SARScoronavirus replicase proteins in pathogenesis</article-title>
<source>Virus Res.</source>
<volume>133</volume>
<year>2008</year>
<comment>(88–10)</comment>
</element-citation>
</ref>
<ref id="bb0035">
<element-citation publication-type="journal" id="rf0035">
<person-group person-group-type="author">
<name>
<surname>Hurst</surname>
<given-names>K.R.</given-names>
</name>
<name>
<surname>Koetzner</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Masters</surname>
<given-names>P.S.</given-names>
</name>
</person-group>
<article-title>Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex</article-title>
<source>J. Virol.</source>
<volume>87</volume>
<issue>16</issue>
<year>2013</year>
<fpage>9159</fpage>
<lpage>9172</lpage>
<pub-id pub-id-type="pmid">23760243</pub-id>
</element-citation>
</ref>
<ref id="bb0040">
<element-citation publication-type="journal" id="rf0040">
<person-group person-group-type="author">
<name>
<surname>Hurst</surname>
<given-names>Kelley R.</given-names>
</name>
<name>
<surname>Koetzner</surname>
<given-names>Cheri A.</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>S.</given-names>
</name>
</person-group>
<source>J. Virol.</source>
<volume>87</volume>
<issue>16</issue>
<year>2013</year>
<fpage>9159</fpage>
<pub-id pub-id-type="doi">10.1128/JVI.01275-13</pub-id>
<pub-id pub-id-type="pmid">23760243</pub-id>
</element-citation>
</ref>
<ref id="bb0045">
<element-citation publication-type="journal" id="rf0045">
<person-group person-group-type="author">
<name>
<surname>Kirchdoerfer</surname>
<given-names>R.N.</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>A.B.</given-names>
</name>
</person-group>
<article-title>Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors</article-title>
<source>Nat. Commun.</source>
<volume>10</volume>
<year>2019</year>
<fpage>2342</fpage>
<pub-id pub-id-type="pmid">31138817</pub-id>
</element-citation>
</ref>
<ref id="bb0050">
<element-citation publication-type="journal" id="rf0050">
<person-group person-group-type="author">
<name>
<surname>Koyama</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Platt</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Parida</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Variant analysis of COVID-19 genomes</article-title>
<source>Bull. World Health Organ.</source>
<year>2020</year>
<pub-id pub-id-type="doi">10.2471/BLT.20.253591</pub-id>
</element-citation>
</ref>
<ref id="bb0055">
<element-citation publication-type="journal" id="rf0055">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Farzan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>Structure of SARS coronavirus spike receptor-binding domain complexed with receptor</article-title>
<source>Science</source>
<volume>309</volume>
<year>2005</year>
<fpage>1864</fpage>
<lpage>1868</lpage>
<pub-id pub-id-type="pmid">16166518</pub-id>
</element-citation>
</ref>
<ref id="bb0060">
<element-citation publication-type="journal" id="rf0060">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia</article-title>
<source>N. Engl. J. Med.</source>
<year>2020</year>
<pub-id pub-id-type="doi">10.1056/NEJMoa2001316</pub-id>
</element-citation>
</ref>
<ref id="bb0065">
<element-citation publication-type="journal" id="rf0065">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding</article-title>
<source>Lancet</source>
<volume>395</volume>
<year>2020</year>
<fpage>565</fpage>
<lpage>574</lpage>
<pub-id pub-id-type="pmid">32007145</pub-id>
</element-citation>
</ref>
<ref id="bb0075">
<element-citation publication-type="journal" id="rf0075">
<person-group person-group-type="author">
<name>
<surname>Niemeyer</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Mosbauer</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Sieberg</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mettelman</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Mielech</surname>
<given-names>A.M.</given-names>
</name>
</person-group>
<article-title>The papain-like protease determines a virulence trait that varies among members of the SARS-coronavirus species</article-title>
<source>PLoS Pathog.</source>
<volume>14</volume>
<issue>9</issue>
<year>2018</year>
<object-id pub-id-type="publisher-id">e1007296</object-id>
</element-citation>
</ref>
<ref id="bb0080">
<element-citation publication-type="journal" id="rf0080">
<person-group person-group-type="author">
<name>
<surname>Oostra</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>de Haan</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Rottier</surname>
<given-names>P.J.</given-names>
</name>
</person-group>
<article-title>The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8</article-title>
<source>J. Virol.</source>
<volume>81</volume>
<year>2007</year>
<fpage>13876</fpage>
<lpage>13888</lpage>
<pub-id pub-id-type="pmid">17928347</pub-id>
</element-citation>
</ref>
<ref id="bb2000">
<element-citation publication-type="journal" id="rf2000">
<person-group person-group-type="author">
<name>
<surname>Ozaslan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Safdar</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kilic</surname>
<given-names>I.H.</given-names>
</name>
<name>
<surname>Khailany</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Practical measures to prevent COVID-19: a mini-review</article-title>
<source>J. Biol. Sci.</source>
<volume>20</volume>
<year>2020</year>
<comment>XX-XX</comment>
</element-citation>
</ref>
<ref id="bb0085">
<element-citation publication-type="journal" id="rf0085">
<person-group person-group-type="author">
<name>
<surname>Payne</surname>
<given-names>D.C.</given-names>
</name>
</person-group>
<article-title>Multihospital outbreak of a Middle East respiratory syndrome coronavirus deletion variant, Jordan: a molecular, serologic, and epidemiologic investigation</article-title>
<source>Open Forum Infect Di</source>
<volume>5</volume>
<year>2018</year>
</element-citation>
</ref>
<ref id="bb0090">
<element-citation publication-type="journal" id="rf0090">
<person-group person-group-type="author">
<name>
<surname>Rice</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Longden</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bleasby</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>EMBOSS: the European molecular biology open software suite</article-title>
<source>Trends Genet.</source>
<volume>16</volume>
<issue>6</issue>
<year>2000</year>
<fpage>276</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="pmid">10827456</pub-id>
</element-citation>
</ref>
<ref id="bb0095">
<element-citation publication-type="journal" id="rf0095">
<person-group person-group-type="author">
<name>
<surname>Sawicki</surname>
<given-names>S.G.</given-names>
</name>
<name>
<surname>Sawicki</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Younker</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Thiel</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Stokes</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Siddell</surname>
<given-names>S.G.</given-names>
</name>
</person-group>
<article-title>Functional and genetic analysis of coronavirus replicase-transcriptase proteins</article-title>
<source>PLoSPathog</source>
<volume>1</volume>
<issue>4</issue>
<year>2005</year>
<fpage>e39</fpage>
</element-citation>
</ref>
<ref id="bb0100">
<element-citation publication-type="journal" id="rf0100">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Nabar</surname>
<given-names>N.R.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>N.N.</given-names>
</name>
<name>
<surname>Kehrl</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes</article-title>
<source>Cell Death Discov</source>
<volume>5</volume>
<year>2019</year>
<fpage>101</fpage>
<pub-id pub-id-type="pmid">31231549</pub-id>
</element-citation>
</ref>
<ref id="bb0105">
<element-citation publication-type="journal" id="rf0105">
<person-group person-group-type="author">
<name>
<surname>Van der Meer</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>van Tol</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Locker</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Snijder</surname>
<given-names>E.J.</given-names>
</name>
</person-group>
<article-title>ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex</article-title>
<source>J. Virol.</source>
<volume>72</volume>
<year>1998</year>
<fpage>6689</fpage>
<lpage>6698</lpage>
<pub-id pub-id-type="pmid">9658116</pub-id>
</element-citation>
</ref>
<ref id="bb0110">
<element-citation publication-type="journal" id="rf0110">
<person-group person-group-type="author">
<name>
<surname>Wan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus</article-title>
<source>J. Virol.</source>
<volume>94</volume>
<year>2020</year>
<pub-id pub-id-type="doi">10.1128/JVI.00127-20</pub-id>
<comment>(e00127-20)</comment>
</element-citation>
</ref>
<ref id="bb0115">
<element-citation publication-type="journal" id="rf0115">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>X.L.</given-names>
</name>
</person-group>
<article-title>Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus</article-title>
<source>J. Virol.</source>
<volume>90</volume>
<year>2015</year>
<fpage>3253</fpage>
<lpage>3256</lpage>
<pub-id pub-id-type="pmid">26719272</pub-id>
</element-citation>
</ref>
</ref-list>
<ack id="ac0005">
<title>Acknowledgments</title>
<p>We highly appreciate many members of the frontline medical and nursing staff who demonstrated selfless and heroic devotion to duty in the face of this outbreak.</p>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7161481
   |texte=   Genomic characterization of a novel SARS-CoV-2
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32300673" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021