Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mixing of Multiple Buoyant Jets

Identifieur interne : 000962 ( PascalFrancis/Curation ); précédent : 000961; suivant : 000963

Mixing of Multiple Buoyant Jets

Auteurs : Joseph H. W. Lee [Hong Kong]

Source :

RBID : Pascal:13-0103555

Descripteurs français

English descriptors

Abstract

Multiple buoyant jets are found in the natural and artificial environment: thermal discharges from fossil and nuclear-fueled electricity generation, domestic and industrial wastewater discharges, brine disposal from desalination plants, and various heat sources in the built environment. An overview of theoretical and experimental modeling of multiple buoyant jets over the past three decades is presented. Basic measurements of the structure of buoyant jet flows, integral jet modeling and three-dimensional numerical solutions of the Reynolds-averaged equations are reviewed. A semianalytical model is proposed to predict the dynamic interaction of multiple buoyant jets in stagnant fluid. The unknown jet trajectories are obtained from an iterative solution of an integral jet model and the irrotational external flow. Predictions are in good agreement with experiments of clustered jet groups, turbulent plume pairs, alternating diffusers, and rosette buoyant jet groups; the approach can also be extended to multiple jets in cross-flow. The mixing of a rosette buoyant jet group in a cross-flow is reviewed. The use of jet theory in solving two unconventional urban environment problems are highlighted: (1) the unraveling of the cause of the severe acute respiratory syndrome (SARS) outbreak in Hong Kong in 2003; and (2) design of a complex river junction for flood control under tight space constraints. It is suggested that experiments will remain a source of new theoretical ideas and the need for a civil engineer to solve complex problems with tractable models and analytical clarity will prevail.
pA  
A01 01  1    @0 0733-9429
A02 01      @0 JHEND8
A03   1    @0 J. hydraul. eng. : (New York, N.Y.)
A05       @2 138
A06       @2 12
A08 01  1  ENG  @1 Mixing of Multiple Buoyant Jets
A11 01  1    @1 LEE (Joseph H. W.)
A14 01      @1 Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay @3 HKG @Z 1 aut.
A14 02      @1 The Univ. of Hong Kong @2 Pokfulam @3 HKG @Z 1 aut.
A20       @1 1008-1021
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 572G @5 354000506334040010
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 13-0103555
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of hydraulic engineering : (New York, N.Y.)
A66 01      @0 USA
C01 01    ENG  @0 Multiple buoyant jets are found in the natural and artificial environment: thermal discharges from fossil and nuclear-fueled electricity generation, domestic and industrial wastewater discharges, brine disposal from desalination plants, and various heat sources in the built environment. An overview of theoretical and experimental modeling of multiple buoyant jets over the past three decades is presented. Basic measurements of the structure of buoyant jet flows, integral jet modeling and three-dimensional numerical solutions of the Reynolds-averaged equations are reviewed. A semianalytical model is proposed to predict the dynamic interaction of multiple buoyant jets in stagnant fluid. The unknown jet trajectories are obtained from an iterative solution of an integral jet model and the irrotational external flow. Predictions are in good agreement with experiments of clustered jet groups, turbulent plume pairs, alternating diffusers, and rosette buoyant jet groups; the approach can also be extended to multiple jets in cross-flow. The mixing of a rosette buoyant jet group in a cross-flow is reviewed. The use of jet theory in solving two unconventional urban environment problems are highlighted: (1) the unraveling of the cause of the severe acute respiratory syndrome (SARS) outbreak in Hong Kong in 2003; and (2) design of a complex river junction for flood control under tight space constraints. It is suggested that experiments will remain a source of new theoretical ideas and the need for a civil engineer to solve complex problems with tractable models and analytical clarity will prevail.
C02 01  3    @0 001B40G27W
C02 02  3    @0 001B40G27P
C03 01  X  FRE  @0 Jet multiple @5 02
C03 01  X  ENG  @0 Multiple jet @5 02
C03 01  X  SPA  @0 Chorro múltiple @5 02
C03 02  3  FRE  @0 Panache @5 03
C03 02  3  ENG  @0 Plumes @5 03
C03 03  3  FRE  @0 Ecoulement turbulent @5 04
C03 03  3  ENG  @0 Turbulent flow @5 04
C03 04  X  FRE  @0 Ecoulement croisé @5 05
C03 04  X  ENG  @0 Crossflow @5 05
C03 04  X  SPA  @0 Flujo cruzado @5 05
C03 05  3  FRE  @0 Mélangeage @5 08
C03 05  3  ENG  @0 Mixing @5 08
C03 06  3  FRE  @0 Interaction @5 09
C03 06  3  ENG  @0 Interactions @5 09
C03 07  3  FRE  @0 Diffuseur @5 10
C03 07  3  ENG  @0 Diffusers @5 10
C03 08  3  FRE  @0 Article synthèse @5 15
C03 08  3  ENG  @0 Reviews @5 15
C03 09  3  FRE  @0 Commande écoulement @5 29
C03 09  3  ENG  @0 Flow control @5 29
C03 10  X  FRE  @0 Evacuation crue @5 30
C03 10  X  ENG  @0 Flood discharge @5 30
C03 10  X  SPA  @0 Evacuación crecida @5 30
C03 11  X  FRE  @0 Dispersion hydrodynamique @5 31
C03 11  X  ENG  @0 Hydrodynamic dispersion @5 31
C03 11  X  SPA  @0 Dispersión hidrodinámica @5 31
C03 12  X  FRE  @0 Virus syndrome respiratoire aigu sévère @2 NW @5 32
C03 12  X  ENG  @0 Severe acute respiratory syndrome virus @2 NW @5 32
C03 12  X  SPA  @0 Severe acute respiratory syndrome virus @2 NW @5 32
C03 13  3  FRE  @0 4727W @4 INC @5 56
C03 14  3  FRE  @0 4727P @4 INC @5 57
C07 01  X  FRE  @0 Coronavirus @2 NW
C07 01  X  ENG  @0 Coronavirus @2 NW
C07 01  X  SPA  @0 Coronavirus @2 NW
C07 02  X  FRE  @0 Coronaviridae @2 NW
C07 02  X  ENG  @0 Coronaviridae @2 NW
C07 02  X  SPA  @0 Coronaviridae @2 NW
C07 03  X  FRE  @0 Nidovirales @2 NW
C07 03  X  ENG  @0 Nidovirales @2 NW
C07 03  X  SPA  @0 Nidovirales @2 NW
C07 04  X  FRE  @0 Virus @2 NW
C07 04  X  ENG  @0 Virus @2 NW
C07 04  X  SPA  @0 Virus @2 NW
N21       @1 077

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0103555

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mixing of Multiple Buoyant Jets</title>
<author>
<name sortKey="Lee, Joseph H W" sort="Lee, Joseph H W" uniqKey="Lee J" first="Joseph H. W." last="Lee">Joseph H. W. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay</s1>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The Univ. of Hong Kong</s1>
<s2>Pokfulam</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0103555</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0103555 INIST</idno>
<idno type="RBID">Pascal:13-0103555</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000025</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000962</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Mixing of Multiple Buoyant Jets</title>
<author>
<name sortKey="Lee, Joseph H W" sort="Lee, Joseph H W" uniqKey="Lee J" first="Joseph H. W." last="Lee">Joseph H. W. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay</s1>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The Univ. of Hong Kong</s1>
<s2>Pokfulam</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Hong Kong</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of hydraulic engineering : (New York, N.Y.)</title>
<title level="j" type="abbreviated">J. hydraul. eng. : (New York, N.Y.)</title>
<idno type="ISSN">0733-9429</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of hydraulic engineering : (New York, N.Y.)</title>
<title level="j" type="abbreviated">J. hydraul. eng. : (New York, N.Y.)</title>
<idno type="ISSN">0733-9429</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crossflow</term>
<term>Diffusers</term>
<term>Flood discharge</term>
<term>Flow control</term>
<term>Hydrodynamic dispersion</term>
<term>Interactions</term>
<term>Mixing</term>
<term>Multiple jet</term>
<term>Plumes</term>
<term>Reviews</term>
<term>Severe acute respiratory syndrome virus</term>
<term>Turbulent flow</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Jet multiple</term>
<term>Panache</term>
<term>Ecoulement turbulent</term>
<term>Ecoulement croisé</term>
<term>Mélangeage</term>
<term>Interaction</term>
<term>Diffuseur</term>
<term>Article synthèse</term>
<term>Commande écoulement</term>
<term>Evacuation crue</term>
<term>Dispersion hydrodynamique</term>
<term>Virus syndrome respiratoire aigu sévère</term>
<term>4727W</term>
<term>4727P</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Multiple buoyant jets are found in the natural and artificial environment: thermal discharges from fossil and nuclear-fueled electricity generation, domestic and industrial wastewater discharges, brine disposal from desalination plants, and various heat sources in the built environment. An overview of theoretical and experimental modeling of multiple buoyant jets over the past three decades is presented. Basic measurements of the structure of buoyant jet flows, integral jet modeling and three-dimensional numerical solutions of the Reynolds-averaged equations are reviewed. A semianalytical model is proposed to predict the dynamic interaction of multiple buoyant jets in stagnant fluid. The unknown jet trajectories are obtained from an iterative solution of an integral jet model and the irrotational external flow. Predictions are in good agreement with experiments of clustered jet groups, turbulent plume pairs, alternating diffusers, and rosette buoyant jet groups; the approach can also be extended to multiple jets in cross-flow. The mixing of a rosette buoyant jet group in a cross-flow is reviewed. The use of jet theory in solving two unconventional urban environment problems are highlighted: (1) the unraveling of the cause of the severe acute respiratory syndrome (SARS) outbreak in Hong Kong in 2003; and (2) design of a complex river junction for flood control under tight space constraints. It is suggested that experiments will remain a source of new theoretical ideas and the need for a civil engineer to solve complex problems with tractable models and analytical clarity will prevail.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0733-9429</s0>
</fA01>
<fA02 i1="01">
<s0>JHEND8</s0>
</fA02>
<fA03 i2="1">
<s0>J. hydraul. eng. : (New York, N.Y.)</s0>
</fA03>
<fA05>
<s2>138</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mixing of Multiple Buoyant Jets</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEE (Joseph H. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay</s1>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>The Univ. of Hong Kong</s1>
<s2>Pokfulam</s2>
<s3>HKG</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>1008-1021</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>572G</s2>
<s5>354000506334040010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0103555</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of hydraulic engineering : (New York, N.Y.)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Multiple buoyant jets are found in the natural and artificial environment: thermal discharges from fossil and nuclear-fueled electricity generation, domestic and industrial wastewater discharges, brine disposal from desalination plants, and various heat sources in the built environment. An overview of theoretical and experimental modeling of multiple buoyant jets over the past three decades is presented. Basic measurements of the structure of buoyant jet flows, integral jet modeling and three-dimensional numerical solutions of the Reynolds-averaged equations are reviewed. A semianalytical model is proposed to predict the dynamic interaction of multiple buoyant jets in stagnant fluid. The unknown jet trajectories are obtained from an iterative solution of an integral jet model and the irrotational external flow. Predictions are in good agreement with experiments of clustered jet groups, turbulent plume pairs, alternating diffusers, and rosette buoyant jet groups; the approach can also be extended to multiple jets in cross-flow. The mixing of a rosette buoyant jet group in a cross-flow is reviewed. The use of jet theory in solving two unconventional urban environment problems are highlighted: (1) the unraveling of the cause of the severe acute respiratory syndrome (SARS) outbreak in Hong Kong in 2003; and (2) design of a complex river junction for flood control under tight space constraints. It is suggested that experiments will remain a source of new theoretical ideas and the need for a civil engineer to solve complex problems with tractable models and analytical clarity will prevail.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40G27W</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40G27P</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Jet multiple</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Multiple jet</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Chorro múltiple</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Panache</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Plumes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Ecoulement turbulent</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Turbulent flow</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Ecoulement croisé</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Crossflow</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Flujo cruzado</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Mélangeage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Mixing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Interaction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Interactions</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffuseur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Diffusers</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Article synthèse</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Reviews</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Commande écoulement</s0>
<s5>29</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Flow control</s0>
<s5>29</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Evacuation crue</s0>
<s5>30</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Flood discharge</s0>
<s5>30</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Evacuación crecida</s0>
<s5>30</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dispersion hydrodynamique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Hydrodynamic dispersion</s0>
<s5>31</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dispersión hidrodinámica</s0>
<s5>31</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Virus syndrome respiratoire aigu sévère</s0>
<s2>NW</s2>
<s5>32</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Severe acute respiratory syndrome virus</s0>
<s2>NW</s2>
<s5>32</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Severe acute respiratory syndrome virus</s0>
<s2>NW</s2>
<s5>32</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>4727W</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>4727P</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Coronavirus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Coronavirus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Coronavirus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fN21>
<s1>077</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000962 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000962 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0103555
   |texte=   Mixing of Multiple Buoyant Jets
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021