Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates.

Identifieur interne : 002A94 ( Ncbi/Merge ); précédent : 002A93; suivant : 002A95

Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates.

Auteurs : Ian Fish [États-Unis] ; Stéphane Boissinot

Source :

RBID : pubmed:26156123

Descripteurs français

English descriptors

Abstract

The oligoadenylate synthetase 1 (OAS1) enzyme acts as an innate sensor of viral infection and plays a major role in the defense against a wide diversity of viruses. Polymorphisms at OAS1 have been shown to correlate with differential susceptibility to several infections of great public health significance, including hepatitis C virus, SARS coronavirus, and West Nile virus. Population genetics analyses in hominoids have revealed interesting evolutionary patterns. In Central African chimpanzee, OAS1 has evolved under long-term balancing selection, resulting in the persistence of polymorphisms since the origin of hominoids, whereas human populations have acquired and retained OAS1 alleles from Neanderthal and Denisovan origin. We decided to further investigate the evolution of OAS1 in primates by characterizing intra-specific variation in four species commonly used as models in infectious disease research: the rhesus macaque, the cynomolgus macaque, the olive baboon, and the Guinea baboon. In baboons, OAS1 harbors a very low level of variation. In contrast, OAS1 in macaques exhibits a level of polymorphism far greater than the genomic average, which is consistent with the action of balancing selection. The region of the enzyme that directly interacts with viral RNA, the RNA-binding domain, contains a number of polymorphisms likely to affect the RNA-binding affinity of OAS1. This strongly suggests that pathogen-driven balancing selection acting on the RNA-binding domain of OAS1 is maintaining variation at this locus. Interestingly, we found that a number of polymorphisms involved in RNA-binding were shared between macaques and chimpanzees. This represents an unusual case of convergent polymorphism.

DOI: 10.1007/s00251-015-0855-0
PubMed: 26156123

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26156123

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates.</title>
<author>
<name sortKey="Fish, Ian" sort="Fish, Ian" uniqKey="Fish I" first="Ian" last="Fish">Ian Fish</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biology Department, Queens College, the City University of New York, Flushing, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Queens College, the City University of New York, Flushing, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boissinot, Stephane" sort="Boissinot, Stephane" uniqKey="Boissinot S" first="Stéphane" last="Boissinot">Stéphane Boissinot</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26156123</idno>
<idno type="pmid">26156123</idno>
<idno type="doi">10.1007/s00251-015-0855-0</idno>
<idno type="wicri:Area/PubMed/Corpus">000E03</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E03</idno>
<idno type="wicri:Area/PubMed/Curation">000E03</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E03</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E44</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000E44</idno>
<idno type="wicri:Area/Ncbi/Merge">002A94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates.</title>
<author>
<name sortKey="Fish, Ian" sort="Fish, Ian" uniqKey="Fish I" first="Ian" last="Fish">Ian Fish</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biology Department, Queens College, the City University of New York, Flushing, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biology Department, Queens College, the City University of New York, Flushing, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boissinot, Stephane" sort="Boissinot, Stephane" uniqKey="Boissinot S" first="Stéphane" last="Boissinot">Stéphane Boissinot</name>
</author>
</analytic>
<series>
<title level="j">Immunogenetics</title>
<idno type="eISSN">1432-1211</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>2',5'-Oligoadenylate Synthetase (genetics)</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Disease Resistance (genetics)</term>
<term>Evolution, Molecular</term>
<term>Haplotypes (genetics)</term>
<term>Macaca fascicularis (genetics)</term>
<term>Macaca fascicularis (immunology)</term>
<term>Macaca mulatta (genetics)</term>
<term>Macaca mulatta (immunology)</term>
<term>Papio anubis (genetics)</term>
<term>Papio anubis (immunology)</term>
<term>Papio papio (genetics)</term>
<term>Papio papio (immunology)</term>
<term>Polymorphism, Genetic (genetics)</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>2',5'-Oligoadenylate synthetase (génétique)</term>
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Haplotypes (génétique)</term>
<term>Macaca fascicularis (génétique)</term>
<term>Macaca fascicularis (immunologie)</term>
<term>Macaca mulatta (génétique)</term>
<term>Macaca mulatta (immunologie)</term>
<term>Papio anubis (génétique)</term>
<term>Papio anubis (immunologie)</term>
<term>Papio papio (génétique)</term>
<term>Papio papio (immunologie)</term>
<term>Polymorphisme génétique (génétique)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Évolution moléculaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>2',5'-Oligoadenylate Synthetase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
<term>Haplotypes</term>
<term>Macaca fascicularis</term>
<term>Macaca mulatta</term>
<term>Papio anubis</term>
<term>Papio papio</term>
<term>Polymorphism, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>2',5'-Oligoadenylate synthetase</term>
<term>Haplotypes</term>
<term>Macaca fascicularis</term>
<term>Macaca mulatta</term>
<term>Papio anubis</term>
<term>Papio papio</term>
<term>Polymorphisme génétique</term>
<term>Résistance à la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Macaca fascicularis</term>
<term>Macaca mulatta</term>
<term>Papio anubis</term>
<term>Papio papio</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Macaca fascicularis</term>
<term>Macaca mulatta</term>
<term>Papio anubis</term>
<term>Papio papio</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Evolution, Molecular</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The oligoadenylate synthetase 1 (OAS1) enzyme acts as an innate sensor of viral infection and plays a major role in the defense against a wide diversity of viruses. Polymorphisms at OAS1 have been shown to correlate with differential susceptibility to several infections of great public health significance, including hepatitis C virus, SARS coronavirus, and West Nile virus. Population genetics analyses in hominoids have revealed interesting evolutionary patterns. In Central African chimpanzee, OAS1 has evolved under long-term balancing selection, resulting in the persistence of polymorphisms since the origin of hominoids, whereas human populations have acquired and retained OAS1 alleles from Neanderthal and Denisovan origin. We decided to further investigate the evolution of OAS1 in primates by characterizing intra-specific variation in four species commonly used as models in infectious disease research: the rhesus macaque, the cynomolgus macaque, the olive baboon, and the Guinea baboon. In baboons, OAS1 harbors a very low level of variation. In contrast, OAS1 in macaques exhibits a level of polymorphism far greater than the genomic average, which is consistent with the action of balancing selection. The region of the enzyme that directly interacts with viral RNA, the RNA-binding domain, contains a number of polymorphisms likely to affect the RNA-binding affinity of OAS1. This strongly suggests that pathogen-driven balancing selection acting on the RNA-binding domain of OAS1 is maintaining variation at this locus. Interestingly, we found that a number of polymorphisms involved in RNA-binding were shared between macaques and chimpanzees. This represents an unusual case of convergent polymorphism. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26156123</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1211</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>67</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Immunogenetics</Title>
<ISOAbbreviation>Immunogenetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates.</ArticleTitle>
<Pagination>
<MedlinePgn>487-99</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00251-015-0855-0</ELocationID>
<Abstract>
<AbstractText>The oligoadenylate synthetase 1 (OAS1) enzyme acts as an innate sensor of viral infection and plays a major role in the defense against a wide diversity of viruses. Polymorphisms at OAS1 have been shown to correlate with differential susceptibility to several infections of great public health significance, including hepatitis C virus, SARS coronavirus, and West Nile virus. Population genetics analyses in hominoids have revealed interesting evolutionary patterns. In Central African chimpanzee, OAS1 has evolved under long-term balancing selection, resulting in the persistence of polymorphisms since the origin of hominoids, whereas human populations have acquired and retained OAS1 alleles from Neanderthal and Denisovan origin. We decided to further investigate the evolution of OAS1 in primates by characterizing intra-specific variation in four species commonly used as models in infectious disease research: the rhesus macaque, the cynomolgus macaque, the olive baboon, and the Guinea baboon. In baboons, OAS1 harbors a very low level of variation. In contrast, OAS1 in macaques exhibits a level of polymorphism far greater than the genomic average, which is consistent with the action of balancing selection. The region of the enzyme that directly interacts with viral RNA, the RNA-binding domain, contains a number of polymorphisms likely to affect the RNA-binding affinity of OAS1. This strongly suggests that pathogen-driven balancing selection acting on the RNA-binding domain of OAS1 is maintaining variation at this locus. Interestingly, we found that a number of polymorphisms involved in RNA-binding were shared between macaques and chimpanzees. This represents an unusual case of convergent polymorphism. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fish</LastName>
<ForeName>Ian</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Biology Department, Queens College, the City University of New York, Flushing, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boissinot</LastName>
<ForeName>Stéphane</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P51 OD011133</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P51 RR013986</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Immunogenetics</MedlineTA>
<NlmUniqueID>0420404</NlmUniqueID>
<ISSNLinking>0093-7711</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.7.7.84</RegistryNumber>
<NameOfSubstance UI="D015088">2',5'-Oligoadenylate Synthetase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015088" MajorTopicYN="N">2',5'-Oligoadenylate Synthetase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006239" MajorTopicYN="N">Haplotypes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008252" MajorTopicYN="N">Macaca fascicularis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008253" MajorTopicYN="N">Macaca mulatta</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048530" MajorTopicYN="N">Papio anubis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048531" MajorTopicYN="N">Papio papio</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26156123</ArticleId>
<ArticleId IdType="doi">10.1007/s00251-015-0855-0</ArticleId>
<ArticleId IdType="pmc">PMC4809017</ArticleId>
<ArticleId IdType="mid">NIHMS760296</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1988 Sep;7(9):2765-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2460344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Oct 16;388(2):317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19665006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Phys Anthropol. 2014 Dec;155(4):621-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25234435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11517324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2000 Oct;57(11):1593-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Evol Biol. 2013;2013:204240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23533945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1993;11:269-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8476562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Jun 20;351(6328):652-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1904993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 May;17(5):738-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10779534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 6;273(6):3236-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9452437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(11):e112332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25383542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1985 Sep;111(1):147-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4029609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Apr 13;316(5822):240-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Immun. 2003 Sep;4(6):411-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12944978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):351-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2014 Dec;29:45-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25173959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2013 Dec;17(12):e1176-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24139794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Dec;81(23):12720-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2006;6:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W665-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):798-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23315957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Immunogenet. 2014 Oct;41(5):384-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25059424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18294402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Nov;12(5):1173-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14636576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Jul 15;181(2):1315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18606686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;277:396-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9379925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1652-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23319625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Med. 2013 Aug;13(3):171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22710942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Apr;7(4):248-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Aug;25(8):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18460447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Apr;29(4):1093-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22104212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2015 Apr;7(4):1016-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25752600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(3):e92545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24651762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1999 Jan;16(1):37-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Jul;19(14):2884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20579289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Interferon Cytokine Res. 1999 Apr;19(4):295-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10334380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Apr;2(4):e64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16683038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12149450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(1):544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25477390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Nov 10;355(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16904151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 1;25(11):1451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Jun;29(6):1513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Apr 22;329(4):1234-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15766558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Oct;81(Pt 10):2341-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10993923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Sep 15;335(6187):268-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3412487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1996 Jul;13(6):735-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8754210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1993 Dec;17(4):355-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8108378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2014 Oct;30:9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24880709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ILAR J. 2013;54(2):166-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24174440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e24745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21935451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2005 Mar;76(3):449-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15700229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Genet. 2010 Dec;128(6):577-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2001 Apr;68(4):978-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11254454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 29;339(6127):1578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23413192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1987 May;116(1):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3110004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Jun 28;4:176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23825473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2003 Aug;57(8):1707-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Feb;5(2):e1000321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515345</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Boissinot, Stephane" sort="Boissinot, Stephane" uniqKey="Boissinot S" first="Stéphane" last="Boissinot">Stéphane Boissinot</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Fish, Ian" sort="Fish, Ian" uniqKey="Fish I" first="Ian" last="Fish">Ian Fish</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002A94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:26156123
   |texte=   Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:26156123" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021