Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sampling for Global Epidemic Models and the Topology of an International Airport Network

Identifieur interne : 001D42 ( Ncbi/Merge ); précédent : 001D41; suivant : 001D43

Sampling for Global Epidemic Models and the Topology of an International Airport Network

Auteurs : Georgiy Bobashev ; Robert J. Morris ; D. Michael Goedecke

Source :

RBID : PMC:2522280

Abstract

Mathematical models that describe the global spread of infectious diseases such as influenza, severe acute respiratory syndrome (SARS), and tuberculosis (TB) often consider a sample of international airports as a network supporting disease spread. However, there is no consensus on how many cities should be selected or on how to select those cities. Using airport flight data that commercial airlines reported to the Official Airline Guide (OAG) in 2000, we have examined the network characteristics of network samples obtained under different selection rules. In addition, we have examined different size samples based on largest flight volume and largest metropolitan populations. We have shown that although the bias in network characteristics increases with the reduction of the sample size, a relatively small number of areas that includes the largest airports, the largest cities, the most-connected cities, and the most central cities is enough to describe the dynamics of the global spread of influenza. The analysis suggests that a relatively small number of cities (around 200 or 300 out of almost 3000) can capture enough network information to adequately describe the global spread of a disease such as influenza. Weak traffic flows between small airports can contribute to noise and mask other means of spread such as the ground transportation.


Url:
DOI: 10.1371/journal.pone.0003154
PubMed: 18776932
PubMed Central: 2522280

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2522280

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sampling for Global Epidemic Models and the Topology of an International Airport Network</title>
<author>
<name sortKey="Bobashev, Georgiy" sort="Bobashev, Georgiy" uniqKey="Bobashev G" first="Georgiy" last="Bobashev">Georgiy Bobashev</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morris, Robert J" sort="Morris, Robert J" uniqKey="Morris R" first="Robert J." last="Morris">Robert J. Morris</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goedecke, D Michael" sort="Goedecke, D Michael" uniqKey="Goedecke D" first="D. Michael" last="Goedecke">D. Michael Goedecke</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18776932</idno>
<idno type="pmc">2522280</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2522280</idno>
<idno type="RBID">PMC:2522280</idno>
<idno type="doi">10.1371/journal.pone.0003154</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">001362</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001362</idno>
<idno type="wicri:Area/Pmc/Curation">001362</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">001362</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000D86</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000D86</idno>
<idno type="wicri:Area/Ncbi/Merge">001D42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Sampling for Global Epidemic Models and the Topology of an International Airport Network</title>
<author>
<name sortKey="Bobashev, Georgiy" sort="Bobashev, Georgiy" uniqKey="Bobashev G" first="Georgiy" last="Bobashev">Georgiy Bobashev</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morris, Robert J" sort="Morris, Robert J" uniqKey="Morris R" first="Robert J." last="Morris">Robert J. Morris</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goedecke, D Michael" sort="Goedecke, D Michael" uniqKey="Goedecke D" first="D. Michael" last="Goedecke">D. Michael Goedecke</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Mathematical models that describe the global spread of infectious diseases such as influenza, severe acute respiratory syndrome (SARS), and tuberculosis (TB) often consider a sample of international airports as a network supporting disease spread. However, there is no consensus on how many cities should be selected or on how to select those cities. Using airport flight data that commercial airlines reported to the Official Airline Guide (OAG) in 2000, we have examined the network characteristics of network samples obtained under different selection rules. In addition, we have examined different size samples based on largest flight volume and largest metropolitan populations. We have shown that although the bias in network characteristics increases with the reduction of the sample size, a relatively small number of areas that includes the largest airports, the largest cities, the most-connected cities, and the most central cities is enough to describe the dynamics of the global spread of influenza. The analysis suggests that a relatively small number of cities (around 200 or 300 out of almost 3000) can capture enough network information to adequately describe the global spread of a disease such as influenza. Weak traffic flows between small airports can contribute to noise and mask other means of spread such as the ground transportation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Guimera, R" uniqKey="Guimera R">R Guimerà</name>
</author>
<author>
<name sortKey="Mossa, S" uniqKey="Mossa S">S Mossa</name>
</author>
<author>
<name sortKey="Turtschi, A" uniqKey="Turtschi A">A Turtschi</name>
</author>
<author>
<name sortKey="Amaral, La" uniqKey="Amaral L">LA Amaral</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colizza, V" uniqKey="Colizza V">V Colizza</name>
</author>
<author>
<name sortKey="Barrat, A" uniqKey="Barrat A">A Barrat</name>
</author>
<author>
<name sortKey="Barthelemy, M" uniqKey="Barthelemy M">M Barthelemy</name>
</author>
<author>
<name sortKey="Vespignani, A" uniqKey="Vespignani A">A Vespignani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooper, Bs" uniqKey="Cooper B">BS Cooper</name>
</author>
<author>
<name sortKey="Pitman, Rj" uniqKey="Pitman R">RJ Pitman</name>
</author>
<author>
<name sortKey="Edmunds, Wj" uniqKey="Edmunds W">WJ Edmunds</name>
</author>
<author>
<name sortKey="Gay, Nj" uniqKey="Gay N">NJ Gay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Epstein, Jm" uniqKey="Epstein J">JM Epstein</name>
</author>
<author>
<name sortKey="Goedecke, Dm" uniqKey="Goedecke D">DM Goedecke</name>
</author>
<author>
<name sortKey="Yu, F" uniqKey="Yu F">F Yu</name>
</author>
<author>
<name sortKey="Morris, Rj" uniqKey="Morris R">RJ Morris</name>
</author>
<author>
<name sortKey="Wagener, Dk" uniqKey="Wagener D">DK Wagener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liljeros, F" uniqKey="Liljeros F">F Liljeros</name>
</author>
<author>
<name sortKey="Edling, Cr" uniqKey="Edling C">CR Edling</name>
</author>
<author>
<name sortKey="Amaral, La" uniqKey="Amaral L">LA Amaral</name>
</author>
<author>
<name sortKey="Stanley, He" uniqKey="Stanley H">HE Stanley</name>
</author>
<author>
<name sortKey="Aberg, Y" uniqKey="Aberg Y">Y Aberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liljeros, F" uniqKey="Liljeros F">F Liljeros</name>
</author>
<author>
<name sortKey="Edling, Cr" uniqKey="Edling C">CR Edling</name>
</author>
<author>
<name sortKey="Nunes Amaral, La" uniqKey="Nunes Amaral L">LA Nunes Amaral</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pastor Satorras, R" uniqKey="Pastor Satorras R">R Pastor-Satorras</name>
</author>
<author>
<name sortKey="Vespignani, A" uniqKey="Vespignani A">A Vespignani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hollingsworth, Td" uniqKey="Hollingsworth T">TD Hollingsworth</name>
</author>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Anderson, Rm" uniqKey="Anderson R">RM Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grais, Rf" uniqKey="Grais R">RF Grais</name>
</author>
<author>
<name sortKey="Ellis, Jh" uniqKey="Ellis J">JH Ellis</name>
</author>
<author>
<name sortKey="Glass, Ge" uniqKey="Glass G">GE Glass</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rvachev, La" uniqKey="Rvachev L">LA Rvachev</name>
</author>
<author>
<name sortKey="Longini, Im" uniqKey="Longini I">IM Longini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stumpf, Mph" uniqKey="Stumpf M">MPH Stumpf</name>
</author>
<author>
<name sortKey="Wiuf, C" uniqKey="Wiuf C">C Wiuf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stumpf, Mph" uniqKey="Stumpf M">MPH Stumpf</name>
</author>
<author>
<name sortKey="Wiuf, C" uniqKey="Wiuf C">C Wiuf</name>
</author>
<author>
<name sortKey="May, Rm" uniqKey="May R">RM May</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoon, S" uniqKey="Yoon S">S Yoon</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S Lee</name>
</author>
<author>
<name sortKey="Yook, Sh" uniqKey="Yook S">SH Yook</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Sh" uniqKey="Lee S">SH Lee</name>
</author>
<author>
<name sortKey="Kim, Pj" uniqKey="Kim P">PJ Kim</name>
</author>
<author>
<name sortKey="Jeong, H" uniqKey="Jeong H">H Jeong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hufnagel, L" uniqKey="Hufnagel L">L Hufnagel</name>
</author>
<author>
<name sortKey="Brockmann, D" uniqKey="Brockmann D">D Brockmann</name>
</author>
<author>
<name sortKey="Geisel, T" uniqKey="Geisel T">T Geisel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borgatti, Sp" uniqKey="Borgatti S">SP Borgatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerneis, S" uniqKey="Kerneis S">S Kernéis</name>
</author>
<author>
<name sortKey="Grais, Rf" uniqKey="Grais R">RF Grais</name>
</author>
<author>
<name sortKey="Boelle, Py" uniqKey="Boelle P">PY Boelle</name>
</author>
<author>
<name sortKey="Flahault, A" uniqKey="Flahault A">A Flahault</name>
</author>
<author>
<name sortKey="Vergu, E" uniqKey="Vergu E">E Vergu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghani, Ac" uniqKey="Ghani A">AC Ghani</name>
</author>
<author>
<name sortKey="Donnelly, Ca" uniqKey="Donnelly C">CA Donnelly</name>
</author>
<author>
<name sortKey="Garnett, Gp" uniqKey="Garnett G">GP Garnett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghani, Ac" uniqKey="Ghani A">AC Ghani</name>
</author>
<author>
<name sortKey="Garnett, Gp" uniqKey="Garnett G">GP Garnett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wasserman, S" uniqKey="Wasserman S">S Wasserman</name>
</author>
<author>
<name sortKey="Faust, K" uniqKey="Faust K">K Faust</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Costenbader, E" uniqKey="Costenbader E">E Costenbader</name>
</author>
<author>
<name sortKey="Valente, Tw" uniqKey="Valente T">TW Valente</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kossinets, G" uniqKey="Kossinets G">G Kossinets</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18776932</article-id>
<article-id pub-id-type="pmc">2522280</article-id>
<article-id pub-id-type="publisher-id">08-PONE-RA-04015R1</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0003154</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline">
<subject>Mathematics/Nonlinear Dynamics</subject>
<subject>Public Health and Epidemiology/Global Health</subject>
<subject>Public Health and Epidemiology/Health Policy</subject>
<subject>Public Health and Epidemiology/Health Services Research and Economics</subject>
<subject>Public Health and Epidemiology/Infectious Diseases</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Sampling for Global Epidemic Models and the Topology of an International Airport Network</article-title>
<alt-title alt-title-type="running-head">Global Epidemic Models</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Bobashev</surname>
<given-names>Georgiy</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Morris</surname>
<given-names>Robert J.</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Goedecke</surname>
<given-names>D. Michael</given-names>
</name>
<xref ref-type="aff" rid="aff1"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<addr-line>RTI International, Research Triangle Park, North Carolina, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Monk</surname>
<given-names>Nick</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">University of Nottingham, United Kingdom</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>bobashev@rti.org</email>
</corresp>
<fn fn-type="con">
<p>Conceived and designed the experiments: GVB. Performed the experiments: GVB RJM DMG. Analyzed the data: GVB DMG. Wrote the paper: GVB RJM DMG.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2008</year>
</pub-date>
<pub-date pub-type="epub">
<day>8</day>
<month>9</month>
<year>2008</year>
</pub-date>
<volume>3</volume>
<issue>9</issue>
<elocation-id>e3154</elocation-id>
<history>
<date date-type="received">
<day>19</day>
<month>3</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>7</day>
<month>8</month>
<year>2008</year>
</date>
</history>
<permissions>
<copyright-statement>Bobashev et al.</copyright-statement>
<copyright-year>2008</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.</license-p>
</license>
</permissions>
<abstract>
<p>Mathematical models that describe the global spread of infectious diseases such as influenza, severe acute respiratory syndrome (SARS), and tuberculosis (TB) often consider a sample of international airports as a network supporting disease spread. However, there is no consensus on how many cities should be selected or on how to select those cities. Using airport flight data that commercial airlines reported to the Official Airline Guide (OAG) in 2000, we have examined the network characteristics of network samples obtained under different selection rules. In addition, we have examined different size samples based on largest flight volume and largest metropolitan populations. We have shown that although the bias in network characteristics increases with the reduction of the sample size, a relatively small number of areas that includes the largest airports, the largest cities, the most-connected cities, and the most central cities is enough to describe the dynamics of the global spread of influenza. The analysis suggests that a relatively small number of cities (around 200 or 300 out of almost 3000) can capture enough network information to adequately describe the global spread of a disease such as influenza. Weak traffic flows between small airports can contribute to noise and mask other means of spread such as the ground transportation.</p>
</abstract>
<counts>
<page-count count="8"></page-count>
</counts>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bobashev, Georgiy" sort="Bobashev, Georgiy" uniqKey="Bobashev G" first="Georgiy" last="Bobashev">Georgiy Bobashev</name>
<name sortKey="Goedecke, D Michael" sort="Goedecke, D Michael" uniqKey="Goedecke D" first="D. Michael" last="Goedecke">D. Michael Goedecke</name>
<name sortKey="Morris, Robert J" sort="Morris, Robert J" uniqKey="Morris R" first="Robert J." last="Morris">Robert J. Morris</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001D42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:2522280
   |texte=   Sampling for Global Epidemic Models and the Topology of an International Airport Network
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:18776932" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021