Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C‐like protease (SARS‐CoV 3CLpro) from its polyproteins

Identifieur interne : 002626 ( Ncbi/Curation ); précédent : 002625; suivant : 002627

Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C‐like protease (SARS‐CoV 3CLpro) from its polyproteins

Auteurs : Tomonari Muramatsu ; Yong-Tae Kim ; Wataru Nishii ; Takaho Terada ; Mikako Shirouzu ; Shigeyuki Yokoyama

Source :

RBID : PMC:7164132

Descripteurs français

English descriptors

Abstract

Like many other RNA viruses, severe acute respiratory syndrome coronavirus (SARSCoV) produces polyproteins containing several non‐structural proteins, which are then processed by the viral proteases. These proteases often exist within the polyproteins, and are excised by their own proteolytic activity (‘autoprocessing’). It is important to investigate the autoprocessing mechanism of these proteases from the point of view of anti‐SARSCoV drug design. In this paper, we describe a new method for investigating the autoprocessing mechanism of the main protease (Mpro), which is also called the 3C‐like protease (3CLpro). Using our method, we measured the activities, under the same conditions, of the mature form and pro‐forms with the N‐terminal pro‐sequence, the C‐terminal pro‐sequence or both pro‐sequences, toward the pro‐form with both N‐ and C‐terminal pro‐sequences. The data indicate that the pro‐forms of the enzyme have proteolytic activity, and are stimulated by the same proteolytic activity. The stimulation occurs in two steps, with approximately eightfold stimulation by N‐terminal cleavage, approximately fourfold stimulation by C‐terminal cleavage, and 23‐fold stimulation by the cleavage of both termini, compared to the pro‐form with both the N‐ and C‐terminal pro‐sequences. Such cleavage mainly occurs in a trans manner; i.e. the pro‐form dimer cleaves the monomeric form. The stimulation by N‐terminal pro‐sequence removal is due to the cis (intra‐dimer and inter‐protomer) effect of formation of the new N‐terminus, whereas that by C‐terminal cleavage is due to removal of its trans (inter‐dimer) inhibitory effect. A numerical simulation of the maturation pathway is presented.


Url:
DOI: 10.1111/febs.12222
PubMed: 23452147
PubMed Central: 7164132

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:7164132

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐like protease (
<styled-content style="fixed-case" toggle="no">SARS</styled-content>
<styled-content style="fixed-case" toggle="no">C</styled-content>
o
<styled-content style="fixed-case" toggle="no">V</styled-content>
3
<styled-content style="fixed-case" toggle="no">CL</styled-content>
<sup>pro</sup>
) from its polyproteins</title>
<author>
<name sortKey="Muramatsu, Tomonari" sort="Muramatsu, Tomonari" uniqKey="Muramatsu T" first="Tomonari" last="Muramatsu">Tomonari Muramatsu</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Ae" sort="Kim, Yong Ae" uniqKey="Kim Y" first="Yong-Tae" last="Kim">Yong-Tae Kim</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="febs12222-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nishii, Wataru" sort="Nishii, Wataru" uniqKey="Nishii W" first="Wataru" last="Nishii">Wataru Nishii</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Terada, Takaho" sort="Terada, Takaho" uniqKey="Terada T" first="Takaho" last="Terada">Takaho Terada</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shirouzu, Mikako" sort="Shirouzu, Mikako" uniqKey="Shirouzu M" first="Mikako" last="Shirouzu">Mikako Shirouzu</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yokoyama, Shigeyuki" sort="Yokoyama, Shigeyuki" uniqKey="Yokoyama S" first="Shigeyuki" last="Yokoyama">Shigeyuki Yokoyama</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23452147</idno>
<idno type="pmc">7164132</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164132</idno>
<idno type="RBID">PMC:7164132</idno>
<idno type="doi">10.1111/febs.12222</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001008</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001008</idno>
<idno type="wicri:Area/Pmc/Curation">001008</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">001008</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000A09</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000A09</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:23452147</idno>
<idno type="wicri:Area/PubMed/Corpus">001245</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001245</idno>
<idno type="wicri:Area/PubMed/Curation">001245</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001245</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001223</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001223</idno>
<idno type="wicri:Area/Ncbi/Merge">002626</idno>
<idno type="wicri:Area/Ncbi/Curation">002626</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐like protease (
<styled-content style="fixed-case" toggle="no">SARS</styled-content>
<styled-content style="fixed-case" toggle="no">C</styled-content>
o
<styled-content style="fixed-case" toggle="no">V</styled-content>
3
<styled-content style="fixed-case" toggle="no">CL</styled-content>
<sup>pro</sup>
) from its polyproteins</title>
<author>
<name sortKey="Muramatsu, Tomonari" sort="Muramatsu, Tomonari" uniqKey="Muramatsu T" first="Tomonari" last="Muramatsu">Tomonari Muramatsu</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Ae" sort="Kim, Yong Ae" uniqKey="Kim Y" first="Yong-Tae" last="Kim">Yong-Tae Kim</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="febs12222-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nishii, Wataru" sort="Nishii, Wataru" uniqKey="Nishii W" first="Wataru" last="Nishii">Wataru Nishii</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Terada, Takaho" sort="Terada, Takaho" uniqKey="Terada T" first="Takaho" last="Terada">Takaho Terada</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shirouzu, Mikako" sort="Shirouzu, Mikako" uniqKey="Shirouzu M" first="Mikako" last="Shirouzu">Mikako Shirouzu</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yokoyama, Shigeyuki" sort="Yokoyama, Shigeyuki" uniqKey="Yokoyama S" first="Shigeyuki" last="Yokoyama">Shigeyuki Yokoyama</name>
<affiliation>
<nlm:aff id="febs12222-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Febs Journal</title>
<idno type="ISSN">1742-464X</idno>
<idno type="eISSN">1742-4658</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acid Substitution</term>
<term>Cysteine Endopeptidases (biosynthesis)</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (genetics)</term>
<term>Enzyme Assays</term>
<term>Escherichia coli</term>
<term>Green Fluorescent Proteins (biosynthesis)</term>
<term>Green Fluorescent Proteins (chemistry)</term>
<term>Kinetics</term>
<term>Mutagenesis, Site-Directed</term>
<term>Polyproteins (biosynthesis)</term>
<term>Polyproteins (chemistry)</term>
<term>Polyproteins (genetics)</term>
<term>Protein Biosynthesis</term>
<term>Protein Precursors (biosynthesis)</term>
<term>Protein Precursors (chemistry)</term>
<term>Protein Precursors (genetics)</term>
<term>Protein Processing, Post-Translational</term>
<term>Proteolysis</term>
<term>Recombinant Fusion Proteins (biosynthesis)</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>SARS Virus (enzymology)</term>
<term>Viral Proteins (biosynthesis)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Cinétique</term>
<term>Cysteine endopeptidases ()</term>
<term>Cysteine endopeptidases (biosynthèse)</term>
<term>Cysteine endopeptidases (génétique)</term>
<term>Dosages enzymatiques</term>
<term>Escherichia coli</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Mutagenèse dirigée</term>
<term>Polyprotéines ()</term>
<term>Polyprotéines (biosynthèse)</term>
<term>Polyprotéines (génétique)</term>
<term>Protéines de fusion recombinantes ()</term>
<term>Protéines de fusion recombinantes (biosynthèse)</term>
<term>Protéines virales ()</term>
<term>Protéines virales (biosynthèse)</term>
<term>Protéines virales (génétique)</term>
<term>Protéines à fluorescence verte ()</term>
<term>Protéines à fluorescence verte (biosynthèse)</term>
<term>Protéolyse</term>
<term>Précurseurs de protéines ()</term>
<term>Précurseurs de protéines (biosynthèse)</term>
<term>Précurseurs de protéines (génétique)</term>
<term>Substitution d'acide aminé</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Green Fluorescent Proteins</term>
<term>Polyproteins</term>
<term>Protein Precursors</term>
<term>Recombinant Fusion Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Green Fluorescent Proteins</term>
<term>Polyproteins</term>
<term>Protein Precursors</term>
<term>Recombinant Fusion Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Polyproteins</term>
<term>Protein Precursors</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Polyprotéines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines virales</term>
<term>Protéines à fluorescence verte</term>
<term>Précurseurs de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Polyprotéines</term>
<term>Protéines virales</term>
<term>Précurseurs de protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acid Substitution</term>
<term>Enzyme Assays</term>
<term>Escherichia coli</term>
<term>Kinetics</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Biosynthesis</term>
<term>Protein Processing, Post-Translational</term>
<term>Proteolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Cinétique</term>
<term>Cysteine endopeptidases</term>
<term>Dosages enzymatiques</term>
<term>Escherichia coli</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Mutagenèse dirigée</term>
<term>Polyprotéines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines virales</term>
<term>Protéines à fluorescence verte</term>
<term>Protéolyse</term>
<term>Précurseurs de protéines</term>
<term>Substitution d'acide aminé</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Like many other
<styled-content style="fixed-case" toggle="no">RNA</styled-content>
viruses, severe acute respiratory syndrome coronavirus (
<styled-content style="fixed-case" toggle="no">SARS</styled-content>
<styled-content style="fixed-case" toggle="no">C</styled-content>
o
<styled-content style="fixed-case" toggle="no">V</styled-content>
) produces polyproteins containing several non‐structural proteins, which are then processed by the viral proteases. These proteases often exist within the polyproteins, and are excised by their own proteolytic activity (‘autoprocessing’). It is important to investigate the autoprocessing mechanism of these proteases from the point of view of anti‐
<styled-content style="fixed-case" toggle="no">SARS</styled-content>
<styled-content style="fixed-case" toggle="no">C</styled-content>
o
<styled-content style="fixed-case" toggle="no">V</styled-content>
drug design. In this paper, we describe a new method for investigating the autoprocessing mechanism of the main protease (
<styled-content style="fixed-case" toggle="no">M</styled-content>
<sup>pro</sup>
), which is also called the 3
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐like protease (3
<styled-content style="fixed-case" toggle="no">CL</styled-content>
<sup>pro</sup>
). Using our method, we measured the activities, under the same conditions, of the mature form and pro‐forms with the
<styled-content style="fixed-case" toggle="no">N</styled-content>
‐terminal pro‐sequence, the
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐terminal pro‐sequence or both pro‐sequences, toward the pro‐form with both
<styled-content style="fixed-case" toggle="no">N</styled-content>
‐ and
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐terminal pro‐sequences. The data indicate that the pro‐forms of the enzyme have proteolytic activity, and are stimulated by the same proteolytic activity. The stimulation occurs in two steps, with approximately eightfold stimulation by
<styled-content style="fixed-case" toggle="no">N</styled-content>
‐terminal cleavage, approximately fourfold stimulation by
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐terminal cleavage, and 23‐fold stimulation by the cleavage of both termini, compared to the pro‐form with both the
<styled-content style="fixed-case" toggle="no">N</styled-content>
‐ and
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐terminal pro‐sequences. Such cleavage mainly occurs in a
<italic>trans</italic>
manner; i.e. the pro‐form dimer cleaves the monomeric form. The stimulation by
<styled-content style="fixed-case" toggle="no">N</styled-content>
‐terminal pro‐sequence removal is due to the
<italic>cis</italic>
(intra‐dimer and inter‐protomer) effect of formation of the new
<styled-content style="fixed-case" toggle="no">N</styled-content>
‐terminus, whereas that by
<styled-content style="fixed-case" toggle="no">C</styled-content>
‐terminal cleavage is due to removal of its
<italic>trans</italic>
(inter‐dimer) inhibitory effect. A numerical simulation of the maturation pathway is presented.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002626 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Curation/biblio.hfd -nk 002626 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:7164132
   |texte=   Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C‐like protease (SARS‐CoV 3CLpro) from its polyproteins
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Curation/RBID.i   -Sk "pubmed:23452147" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021