Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.

Identifieur interne : 001223 ( PubMed/Checkpoint ); précédent : 001222; suivant : 001224

Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.

Auteurs : Tomonari Muramatsu [Japon] ; Yong-Tae Kim ; Wataru Nishii ; Takaho Terada ; Mikako Shirouzu ; Shigeyuki Yokoyama

Source :

RBID : pubmed:23452147

Descripteurs français

English descriptors

Abstract

Like many other RNA viruses, severe acute respiratory syndrome coronavirus (SARS-CoV) produces polyproteins containing several non-structural proteins, which are then processed by the viral proteases. These proteases often exist within the polyproteins, and are excised by their own proteolytic activity ('autoprocessing'). It is important to investigate the autoprocessing mechanism of these proteases from the point of view of anti-SARS-CoV drug design. In this paper, we describe a new method for investigating the autoprocessing mechanism of the main protease (M(pro)), which is also called the 3C-like protease (3CL(pro)). Using our method, we measured the activities, under the same conditions, of the mature form and pro-forms with the N-terminal pro-sequence, the C-terminal pro-sequence or both pro-sequences, toward the pro-form with both N- and C-terminal pro-sequences. The data indicate that the pro-forms of the enzyme have proteolytic activity, and are stimulated by the same proteolytic activity. The stimulation occurs in two steps, with approximately eightfold stimulation by N-terminal cleavage, approximately fourfold stimulation by C-terminal cleavage, and 23-fold stimulation by the cleavage of both termini, compared to the pro-form with both the N- and C-terminal pro-sequences. Such cleavage mainly occurs in a trans manner; i.e. the pro-form dimer cleaves the monomeric form. The stimulation by N-terminal pro-sequence removal is due to the cis (intra-dimer and inter-protomer) effect of formation of the new N-terminus, whereas that by C-terminal cleavage is due to removal of its trans (inter-dimer) inhibitory effect. A numerical simulation of the maturation pathway is presented.

DOI: 10.1111/febs.12222
PubMed: 23452147


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23452147

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.</title>
<author>
<name sortKey="Muramatsu, Tomonari" sort="Muramatsu, Tomonari" uniqKey="Muramatsu T" first="Tomonari" last="Muramatsu">Tomonari Muramatsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan. tmuramat@gsc.riken.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama</wicri:regionArea>
<wicri:noRegion>Yokohama</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Tae" sort="Kim, Yong Tae" uniqKey="Kim Y" first="Yong-Tae" last="Kim">Yong-Tae Kim</name>
</author>
<author>
<name sortKey="Nishii, Wataru" sort="Nishii, Wataru" uniqKey="Nishii W" first="Wataru" last="Nishii">Wataru Nishii</name>
</author>
<author>
<name sortKey="Terada, Takaho" sort="Terada, Takaho" uniqKey="Terada T" first="Takaho" last="Terada">Takaho Terada</name>
</author>
<author>
<name sortKey="Shirouzu, Mikako" sort="Shirouzu, Mikako" uniqKey="Shirouzu M" first="Mikako" last="Shirouzu">Mikako Shirouzu</name>
</author>
<author>
<name sortKey="Yokoyama, Shigeyuki" sort="Yokoyama, Shigeyuki" uniqKey="Yokoyama S" first="Shigeyuki" last="Yokoyama">Shigeyuki Yokoyama</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23452147</idno>
<idno type="pmid">23452147</idno>
<idno type="doi">10.1111/febs.12222</idno>
<idno type="wicri:Area/PubMed/Corpus">001245</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001245</idno>
<idno type="wicri:Area/PubMed/Curation">001245</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001245</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001223</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001223</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.</title>
<author>
<name sortKey="Muramatsu, Tomonari" sort="Muramatsu, Tomonari" uniqKey="Muramatsu T" first="Tomonari" last="Muramatsu">Tomonari Muramatsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan. tmuramat@gsc.riken.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama</wicri:regionArea>
<wicri:noRegion>Yokohama</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Tae" sort="Kim, Yong Tae" uniqKey="Kim Y" first="Yong-Tae" last="Kim">Yong-Tae Kim</name>
</author>
<author>
<name sortKey="Nishii, Wataru" sort="Nishii, Wataru" uniqKey="Nishii W" first="Wataru" last="Nishii">Wataru Nishii</name>
</author>
<author>
<name sortKey="Terada, Takaho" sort="Terada, Takaho" uniqKey="Terada T" first="Takaho" last="Terada">Takaho Terada</name>
</author>
<author>
<name sortKey="Shirouzu, Mikako" sort="Shirouzu, Mikako" uniqKey="Shirouzu M" first="Mikako" last="Shirouzu">Mikako Shirouzu</name>
</author>
<author>
<name sortKey="Yokoyama, Shigeyuki" sort="Yokoyama, Shigeyuki" uniqKey="Yokoyama S" first="Shigeyuki" last="Yokoyama">Shigeyuki Yokoyama</name>
</author>
</analytic>
<series>
<title level="j">The FEBS journal</title>
<idno type="eISSN">1742-4658</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acid Substitution</term>
<term>Cysteine Endopeptidases (biosynthesis)</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (genetics)</term>
<term>Enzyme Assays</term>
<term>Escherichia coli</term>
<term>Green Fluorescent Proteins (biosynthesis)</term>
<term>Green Fluorescent Proteins (chemistry)</term>
<term>Kinetics</term>
<term>Mutagenesis, Site-Directed</term>
<term>Polyproteins (biosynthesis)</term>
<term>Polyproteins (chemistry)</term>
<term>Polyproteins (genetics)</term>
<term>Protein Biosynthesis</term>
<term>Protein Precursors (biosynthesis)</term>
<term>Protein Precursors (chemistry)</term>
<term>Protein Precursors (genetics)</term>
<term>Protein Processing, Post-Translational</term>
<term>Proteolysis</term>
<term>Recombinant Fusion Proteins (biosynthesis)</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>SARS Virus (enzymology)</term>
<term>Viral Proteins (biosynthesis)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Cinétique</term>
<term>Cysteine endopeptidases ()</term>
<term>Cysteine endopeptidases (biosynthèse)</term>
<term>Cysteine endopeptidases (génétique)</term>
<term>Dosages enzymatiques</term>
<term>Escherichia coli</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Mutagenèse dirigée</term>
<term>Polyprotéines ()</term>
<term>Polyprotéines (biosynthèse)</term>
<term>Polyprotéines (génétique)</term>
<term>Protéines de fusion recombinantes ()</term>
<term>Protéines de fusion recombinantes (biosynthèse)</term>
<term>Protéines virales ()</term>
<term>Protéines virales (biosynthèse)</term>
<term>Protéines virales (génétique)</term>
<term>Protéines à fluorescence verte ()</term>
<term>Protéines à fluorescence verte (biosynthèse)</term>
<term>Protéolyse</term>
<term>Précurseurs de protéines ()</term>
<term>Précurseurs de protéines (biosynthèse)</term>
<term>Précurseurs de protéines (génétique)</term>
<term>Substitution d'acide aminé</term>
<term>Séquence d'acides aminés</term>
<term>Virus du SRAS (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Green Fluorescent Proteins</term>
<term>Polyproteins</term>
<term>Protein Precursors</term>
<term>Recombinant Fusion Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Green Fluorescent Proteins</term>
<term>Polyproteins</term>
<term>Protein Precursors</term>
<term>Recombinant Fusion Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Polyproteins</term>
<term>Protein Precursors</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Polyprotéines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines virales</term>
<term>Protéines à fluorescence verte</term>
<term>Précurseurs de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Polyprotéines</term>
<term>Protéines virales</term>
<term>Précurseurs de protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Amino Acid Substitution</term>
<term>Enzyme Assays</term>
<term>Escherichia coli</term>
<term>Kinetics</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Biosynthesis</term>
<term>Protein Processing, Post-Translational</term>
<term>Proteolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Cinétique</term>
<term>Cysteine endopeptidases</term>
<term>Dosages enzymatiques</term>
<term>Escherichia coli</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Mutagenèse dirigée</term>
<term>Polyprotéines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines virales</term>
<term>Protéines à fluorescence verte</term>
<term>Protéolyse</term>
<term>Précurseurs de protéines</term>
<term>Substitution d'acide aminé</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Like many other RNA viruses, severe acute respiratory syndrome coronavirus (SARS-CoV) produces polyproteins containing several non-structural proteins, which are then processed by the viral proteases. These proteases often exist within the polyproteins, and are excised by their own proteolytic activity ('autoprocessing'). It is important to investigate the autoprocessing mechanism of these proteases from the point of view of anti-SARS-CoV drug design. In this paper, we describe a new method for investigating the autoprocessing mechanism of the main protease (M(pro)), which is also called the 3C-like protease (3CL(pro)). Using our method, we measured the activities, under the same conditions, of the mature form and pro-forms with the N-terminal pro-sequence, the C-terminal pro-sequence or both pro-sequences, toward the pro-form with both N- and C-terminal pro-sequences. The data indicate that the pro-forms of the enzyme have proteolytic activity, and are stimulated by the same proteolytic activity. The stimulation occurs in two steps, with approximately eightfold stimulation by N-terminal cleavage, approximately fourfold stimulation by C-terminal cleavage, and 23-fold stimulation by the cleavage of both termini, compared to the pro-form with both the N- and C-terminal pro-sequences. Such cleavage mainly occurs in a trans manner; i.e. the pro-form dimer cleaves the monomeric form. The stimulation by N-terminal pro-sequence removal is due to the cis (intra-dimer and inter-protomer) effect of formation of the new N-terminus, whereas that by C-terminal cleavage is due to removal of its trans (inter-dimer) inhibitory effect. A numerical simulation of the maturation pathway is presented.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23452147</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1742-4658</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>280</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>The FEBS journal</Title>
<ISOAbbreviation>FEBS J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.</ArticleTitle>
<Pagination>
<MedlinePgn>2002-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/febs.12222</ELocationID>
<Abstract>
<AbstractText>Like many other RNA viruses, severe acute respiratory syndrome coronavirus (SARS-CoV) produces polyproteins containing several non-structural proteins, which are then processed by the viral proteases. These proteases often exist within the polyproteins, and are excised by their own proteolytic activity ('autoprocessing'). It is important to investigate the autoprocessing mechanism of these proteases from the point of view of anti-SARS-CoV drug design. In this paper, we describe a new method for investigating the autoprocessing mechanism of the main protease (M(pro)), which is also called the 3C-like protease (3CL(pro)). Using our method, we measured the activities, under the same conditions, of the mature form and pro-forms with the N-terminal pro-sequence, the C-terminal pro-sequence or both pro-sequences, toward the pro-form with both N- and C-terminal pro-sequences. The data indicate that the pro-forms of the enzyme have proteolytic activity, and are stimulated by the same proteolytic activity. The stimulation occurs in two steps, with approximately eightfold stimulation by N-terminal cleavage, approximately fourfold stimulation by C-terminal cleavage, and 23-fold stimulation by the cleavage of both termini, compared to the pro-form with both the N- and C-terminal pro-sequences. Such cleavage mainly occurs in a trans manner; i.e. the pro-form dimer cleaves the monomeric form. The stimulation by N-terminal pro-sequence removal is due to the cis (intra-dimer and inter-protomer) effect of formation of the new N-terminus, whereas that by C-terminal cleavage is due to removal of its trans (inter-dimer) inhibitory effect. A numerical simulation of the maturation pathway is presented.</AbstractText>
<CopyrightInformation>© 2013 The Authors Journal compilation © 2013 FEBS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Muramatsu</LastName>
<ForeName>Tomonari</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan. tmuramat@gsc.riken.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Yong-Tae</ForeName>
<Initials>YT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nishii</LastName>
<ForeName>Wataru</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Terada</LastName>
<ForeName>Takaho</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shirouzu</LastName>
<ForeName>Mikako</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yokoyama</LastName>
<ForeName>Shigeyuki</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS J</MedlineTA>
<NlmUniqueID>101229646</NlmUniqueID>
<ISSNLinking>1742-464X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020815">Polyproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011498">Protein Precursors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057075" MajorTopicYN="N">Enzyme Assays</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020815" MajorTopicYN="N">Polyproteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011498" MajorTopicYN="N">Protein Precursors</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="Y">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="Y">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23452147</ArticleId>
<ArticleId IdType="doi">10.1111/febs.12222</ArticleId>
<ArticleId IdType="pmc">PMC7164132</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virology. 2009 Jun 5;388(2):324-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19409595</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Cell. 2010 Jan;1(1):59-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21203998</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2008 Jun;15(6):597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18559270</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Aug;7(4):412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358261</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 1999 Jan 8;442(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9923595</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Struct Funct Genomics. 2004;5(1-2):63-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15263844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-2315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2010 Oct 06;5(10):e13197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20949131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jun 11;318(4):862-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147951</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):31257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2008 Jan 4;283(1):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977841</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Dec;82(24):12392-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12323-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855519</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2010 Sep 3;285(36):28134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489209</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2007 Feb 23;366(3):965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189639</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 1994 Mar 21;341(2-3):277-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8137953</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 May;82(9):4620-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kim, Yong Tae" sort="Kim, Yong Tae" uniqKey="Kim Y" first="Yong-Tae" last="Kim">Yong-Tae Kim</name>
<name sortKey="Nishii, Wataru" sort="Nishii, Wataru" uniqKey="Nishii W" first="Wataru" last="Nishii">Wataru Nishii</name>
<name sortKey="Shirouzu, Mikako" sort="Shirouzu, Mikako" uniqKey="Shirouzu M" first="Mikako" last="Shirouzu">Mikako Shirouzu</name>
<name sortKey="Terada, Takaho" sort="Terada, Takaho" uniqKey="Terada T" first="Takaho" last="Terada">Takaho Terada</name>
<name sortKey="Yokoyama, Shigeyuki" sort="Yokoyama, Shigeyuki" uniqKey="Yokoyama S" first="Shigeyuki" last="Yokoyama">Shigeyuki Yokoyama</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Muramatsu, Tomonari" sort="Muramatsu, Tomonari" uniqKey="Muramatsu T" first="Tomonari" last="Muramatsu">Tomonari Muramatsu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001223 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001223 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23452147
   |texte=   Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23452147" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021