Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of spike protein endodomains in regulating coronavirus entry.

Identifieur interne : 002A33 ( Main/Exploration ); précédent : 002A32; suivant : 002A34

Role of spike protein endodomains in regulating coronavirus entry.

Auteurs : Ana Shulla [États-Unis] ; Tom Gallagher

Source :

RBID : pubmed:19801669

Descripteurs français

English descriptors

Abstract

Enveloped viruses enter cells by viral glycoprotein-mediated binding to host cells and subsequent fusion of virus and host cell membranes. For the coronaviruses, viral spike (S) proteins execute these cell entry functions. The S proteins are set apart from other viral and cellular membrane fusion proteins by their extensively palmitoylated membrane-associated tails. Palmitate adducts are generally required for protein-mediated fusions, but their precise roles in the process are unclear. To obtain additional insights into the S-mediated membrane fusion process, we focused on these acylated carboxyl-terminal intravirion tails. Substituting alanines for the cysteines that are subject to palmitoylation had effects on both S incorporation into virions and S-mediated membrane fusions. In specifically dissecting the effects of endodomain mutations on the fusion process, we used antiviral heptad repeat peptides that bind only to folding intermediates in the S-mediated fusion process and found that mutants lacking three palmitoylated cysteines remained in transitional folding states nearly 10 times longer than native S proteins. This slower refolding was also reflected in the paucity of postfusion six-helix bundle configurations among the mutant S proteins. Viruses with fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific infectivities. These findings indicate that lipid adducts anchoring S proteins into virus membranes are necessary for the rapid, productive S protein refolding events that culminate in membrane fusions. These studies reveal a previously unappreciated role for covalently attached lipids on the endodomains of viral proteins eliciting membrane fusion reactions.

DOI: 10.1074/jbc.M109.043547
PubMed: 19801669


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of spike protein endodomains in regulating coronavirus entry.</title>
<author>
<name sortKey="Shulla, Ana" sort="Shulla, Ana" uniqKey="Shulla A" first="Ana" last="Shulla">Ana Shulla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153</wicri:regionArea>
<wicri:noRegion>Illinois 60153</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19801669</idno>
<idno type="pmid">19801669</idno>
<idno type="doi">10.1074/jbc.M109.043547</idno>
<idno type="wicri:Area/PubMed/Corpus">001815</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001815</idno>
<idno type="wicri:Area/PubMed/Curation">001815</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001815</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001801</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001801</idno>
<idno type="wicri:Area/Ncbi/Merge">002010</idno>
<idno type="wicri:Area/Ncbi/Curation">002010</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002010</idno>
<idno type="wicri:Area/Main/Merge">002A79</idno>
<idno type="wicri:Area/Main/Curation">002A33</idno>
<idno type="wicri:Area/Main/Exploration">002A33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of spike protein endodomains in regulating coronavirus entry.</title>
<author>
<name sortKey="Shulla, Ana" sort="Shulla, Ana" uniqKey="Shulla A" first="Ana" last="Shulla">Ana Shulla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153</wicri:regionArea>
<wicri:noRegion>Illinois 60153</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Coronavirus (pathogenicity)</term>
<term>Cysteine (chemistry)</term>
<term>Fibroblasts (metabolism)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Lipids (chemistry)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (physiology)</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Palmitic Acid (chemistry)</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide palmitique ()</term>
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Coronavirus (pathogénicité)</term>
<term>Cystéine ()</term>
<term>Données de séquences moléculaires</term>
<term>Fibroblastes (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires ()</term>
<term>Glycoprotéines membranaires (physiologie)</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Lipides ()</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Protéines de l'enveloppe virale (physiologie)</term>
<term>Souris</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Lipids</term>
<term>Membrane Glycoproteins</term>
<term>Palmitic Acid</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fibroblasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fibroblastes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acide palmitique</term>
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cystéine</term>
<term>Données de séquences moléculaires</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Lipides</term>
<term>Protéines de l'enveloppe virale</term>
<term>Souris</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Enveloped viruses enter cells by viral glycoprotein-mediated binding to host cells and subsequent fusion of virus and host cell membranes. For the coronaviruses, viral spike (S) proteins execute these cell entry functions. The S proteins are set apart from other viral and cellular membrane fusion proteins by their extensively palmitoylated membrane-associated tails. Palmitate adducts are generally required for protein-mediated fusions, but their precise roles in the process are unclear. To obtain additional insights into the S-mediated membrane fusion process, we focused on these acylated carboxyl-terminal intravirion tails. Substituting alanines for the cysteines that are subject to palmitoylation had effects on both S incorporation into virions and S-mediated membrane fusions. In specifically dissecting the effects of endodomain mutations on the fusion process, we used antiviral heptad repeat peptides that bind only to folding intermediates in the S-mediated fusion process and found that mutants lacking three palmitoylated cysteines remained in transitional folding states nearly 10 times longer than native S proteins. This slower refolding was also reflected in the paucity of postfusion six-helix bundle configurations among the mutant S proteins. Viruses with fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific infectivities. These findings indicate that lipid adducts anchoring S proteins into virus membranes are necessary for the rapid, productive S protein refolding events that culminate in membrane fusions. These studies reveal a previously unappreciated role for covalently attached lipids on the endodomains of viral proteins eliciting membrane fusion reactions.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Shulla, Ana" sort="Shulla, Ana" uniqKey="Shulla A" first="Ana" last="Shulla">Ana Shulla</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19801669
   |texte=   Role of spike protein endodomains in regulating coronavirus entry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19801669" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021