Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of spike protein endodomains in regulating coronavirus entry.

Identifieur interne : 001801 ( PubMed/Checkpoint ); précédent : 001800; suivant : 001802

Role of spike protein endodomains in regulating coronavirus entry.

Auteurs : Ana Shulla [États-Unis] ; Tom Gallagher

Source :

RBID : pubmed:19801669

Descripteurs français

English descriptors

Abstract

Enveloped viruses enter cells by viral glycoprotein-mediated binding to host cells and subsequent fusion of virus and host cell membranes. For the coronaviruses, viral spike (S) proteins execute these cell entry functions. The S proteins are set apart from other viral and cellular membrane fusion proteins by their extensively palmitoylated membrane-associated tails. Palmitate adducts are generally required for protein-mediated fusions, but their precise roles in the process are unclear. To obtain additional insights into the S-mediated membrane fusion process, we focused on these acylated carboxyl-terminal intravirion tails. Substituting alanines for the cysteines that are subject to palmitoylation had effects on both S incorporation into virions and S-mediated membrane fusions. In specifically dissecting the effects of endodomain mutations on the fusion process, we used antiviral heptad repeat peptides that bind only to folding intermediates in the S-mediated fusion process and found that mutants lacking three palmitoylated cysteines remained in transitional folding states nearly 10 times longer than native S proteins. This slower refolding was also reflected in the paucity of postfusion six-helix bundle configurations among the mutant S proteins. Viruses with fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific infectivities. These findings indicate that lipid adducts anchoring S proteins into virus membranes are necessary for the rapid, productive S protein refolding events that culminate in membrane fusions. These studies reveal a previously unappreciated role for covalently attached lipids on the endodomains of viral proteins eliciting membrane fusion reactions.

DOI: 10.1074/jbc.M109.043547
PubMed: 19801669


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19801669

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of spike protein endodomains in regulating coronavirus entry.</title>
<author>
<name sortKey="Shulla, Ana" sort="Shulla, Ana" uniqKey="Shulla A" first="Ana" last="Shulla">Ana Shulla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153</wicri:regionArea>
<wicri:noRegion>Illinois 60153</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19801669</idno>
<idno type="pmid">19801669</idno>
<idno type="doi">10.1074/jbc.M109.043547</idno>
<idno type="wicri:Area/PubMed/Corpus">001815</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001815</idno>
<idno type="wicri:Area/PubMed/Curation">001815</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001815</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001801</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001801</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of spike protein endodomains in regulating coronavirus entry.</title>
<author>
<name sortKey="Shulla, Ana" sort="Shulla, Ana" uniqKey="Shulla A" first="Ana" last="Shulla">Ana Shulla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153</wicri:regionArea>
<wicri:noRegion>Illinois 60153</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Coronavirus (pathogenicity)</term>
<term>Cysteine (chemistry)</term>
<term>Fibroblasts (metabolism)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Lipids (chemistry)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (physiology)</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Palmitic Acid (chemistry)</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide palmitique ()</term>
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Coronavirus (pathogénicité)</term>
<term>Cystéine ()</term>
<term>Données de séquences moléculaires</term>
<term>Fibroblastes (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires ()</term>
<term>Glycoprotéines membranaires (physiologie)</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Lipides ()</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Protéines de l'enveloppe virale (physiologie)</term>
<term>Souris</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Lipids</term>
<term>Membrane Glycoproteins</term>
<term>Palmitic Acid</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fibroblasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fibroblastes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glycoprotéines membranaires</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acide palmitique</term>
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cystéine</term>
<term>Données de séquences moléculaires</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Glycoprotéines membranaires</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Lipides</term>
<term>Protéines de l'enveloppe virale</term>
<term>Souris</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Enveloped viruses enter cells by viral glycoprotein-mediated binding to host cells and subsequent fusion of virus and host cell membranes. For the coronaviruses, viral spike (S) proteins execute these cell entry functions. The S proteins are set apart from other viral and cellular membrane fusion proteins by their extensively palmitoylated membrane-associated tails. Palmitate adducts are generally required for protein-mediated fusions, but their precise roles in the process are unclear. To obtain additional insights into the S-mediated membrane fusion process, we focused on these acylated carboxyl-terminal intravirion tails. Substituting alanines for the cysteines that are subject to palmitoylation had effects on both S incorporation into virions and S-mediated membrane fusions. In specifically dissecting the effects of endodomain mutations on the fusion process, we used antiviral heptad repeat peptides that bind only to folding intermediates in the S-mediated fusion process and found that mutants lacking three palmitoylated cysteines remained in transitional folding states nearly 10 times longer than native S proteins. This slower refolding was also reflected in the paucity of postfusion six-helix bundle configurations among the mutant S proteins. Viruses with fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific infectivities. These findings indicate that lipid adducts anchoring S proteins into virus membranes are necessary for the rapid, productive S protein refolding events that culminate in membrane fusions. These studies reveal a previously unappreciated role for covalently attached lipids on the endodomains of viral proteins eliciting membrane fusion reactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19801669</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>12</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>284</Volume>
<Issue>47</Issue>
<PubDate>
<Year>2009</Year>
<Month>Nov</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of spike protein endodomains in regulating coronavirus entry.</ArticleTitle>
<Pagination>
<MedlinePgn>32725-34</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M109.043547</ELocationID>
<Abstract>
<AbstractText>Enveloped viruses enter cells by viral glycoprotein-mediated binding to host cells and subsequent fusion of virus and host cell membranes. For the coronaviruses, viral spike (S) proteins execute these cell entry functions. The S proteins are set apart from other viral and cellular membrane fusion proteins by their extensively palmitoylated membrane-associated tails. Palmitate adducts are generally required for protein-mediated fusions, but their precise roles in the process are unclear. To obtain additional insights into the S-mediated membrane fusion process, we focused on these acylated carboxyl-terminal intravirion tails. Substituting alanines for the cysteines that are subject to palmitoylation had effects on both S incorporation into virions and S-mediated membrane fusions. In specifically dissecting the effects of endodomain mutations on the fusion process, we used antiviral heptad repeat peptides that bind only to folding intermediates in the S-mediated fusion process and found that mutants lacking three palmitoylated cysteines remained in transitional folding states nearly 10 times longer than native S proteins. This slower refolding was also reflected in the paucity of postfusion six-helix bundle configurations among the mutant S proteins. Viruses with fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific infectivities. These findings indicate that lipid adducts anchoring S proteins into virus membranes are necessary for the rapid, productive S protein refolding events that culminate in membrane fusions. These studies reveal a previously unappreciated role for covalently attached lipids on the endodomains of viral proteins eliciting membrane fusion reactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shulla</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gallagher</LastName>
<ForeName>Tom</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI060030</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI60030</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008055">Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2V16EO95H1</RegistryNumber>
<NameOfSubstance UI="D019308">Palmitic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005347" MajorTopicYN="N">Fibroblasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008055" MajorTopicYN="N">Lipids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019308" MajorTopicYN="N">Palmitic Acid</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19801669</ArticleId>
<ArticleId IdType="pii">M109.043547</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M109.043547</ArticleId>
<ArticleId IdType="pmc">PMC2781689</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1994 Jan 28;76(2):383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8293471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jul 1;47(26):6802-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18540634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Mar;82(6):2989-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18184706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5384-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18378904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jun;82(11):5417-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Sep 13;297(5588):1877-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Dec;76(23):11819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jan;77(2):830-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):926-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2003;72:175-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Nov;77(21):11312-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14557617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 May 14;279(20):20836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 16;279(29):30514-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Jul;15(7):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Jul;15(7):690-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Feb 13;386(1):14-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Aug;83(15):7411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Feb;74(3):1393-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10627550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Apr;74(7):3264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Mar 30;269(1):212-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(10):4634-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10775599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Oct 16;151(2):413-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13523-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11095714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Nov 10;103(4):679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Mar;75(6):2792-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13925-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2001;494:205-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11774470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(9):4603-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Jan;124(1-2):55-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8294506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Aug 1;202(2):814-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8030244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9871-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Oct;131(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Jan;70(1):248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8523533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Dec 20;214(2):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8553547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Apr;71(4):3129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Feb;72(2):1224-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9445022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Apr;72(4):3278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1998 Apr;5(4):276-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9546217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 May 29;93(5):681-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9630213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Oct 10;250(1):140-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9770428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 5;274(6):3910-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9920947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Jun;10(6):1821-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10359599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(1):106-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:133-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Apr 10;334(2):306-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 10;308(5728):1643-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Oct;79(19):12231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16160149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(21):13673-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Feb;80(3):1280-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Feb;80(3):1302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5768-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 15;441(7095):847-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16728975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2006 Aug;155(2):162-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16765058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Feb 15;445(7129):732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17301785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 10;360(2):264-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17134730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Apr;64(7-8):850-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17429580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9904-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 2004 May 1;199(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15366419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2005;292:187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1972 Oct;6(4):501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4564284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1973 Apr;52(2):456-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4705382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1978 Jul;14(3):725-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">210957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Vet Res. 1981 Mar;42(3):368-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6267960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Oct;78(10):6023-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6947213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1983 Dec;131(2):296-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6318433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1984 Mar;33(2):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1987 Aug 20;196(4):963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3681988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Nov;64(11):5367-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2170676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Dec;64(12):6314-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2243396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 May;65(5):2491-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1901916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Dec 15;108(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1660837</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gallagher, Tom" sort="Gallagher, Tom" uniqKey="Gallagher T" first="Tom" last="Gallagher">Tom Gallagher</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Shulla, Ana" sort="Shulla, Ana" uniqKey="Shulla A" first="Ana" last="Shulla">Ana Shulla</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001801 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001801 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:19801669
   |texte=   Role of spike protein endodomains in regulating coronavirus entry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:19801669" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021