Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro.

Identifieur interne : 000C09 ( Main/Exploration ); précédent : 000C08; suivant : 000C10

Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro.

Auteurs : Stacy R. Webb [États-Unis] ; Stacy E. Smith [États-Unis] ; Michael G. Fried [États-Unis] ; Rebecca Ellis Dutch [États-Unis]

Source :

RBID : pubmed:29669880

Descripteurs français

English descriptors

Abstract

Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families.IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens-Ebola virus, influenza virus, SARS CoV, and rabies virus-self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development.

DOI: 10.1128/mSphere.00047-18
PubMed: 29669880


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association
<i>In Vitro</i>
.</title>
<author>
<name sortKey="Webb, Stacy R" sort="Webb, Stacy R" uniqKey="Webb S" first="Stacy R" last="Webb">Stacy R. Webb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Stacy E" sort="Smith, Stacy E" uniqKey="Smith S" first="Stacy E" last="Smith">Stacy E. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fried, Michael G" sort="Fried, Michael G" uniqKey="Fried M" first="Michael G" last="Fried">Michael G. Fried</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dutch, Rebecca Ellis" sort="Dutch, Rebecca Ellis" uniqKey="Dutch R" first="Rebecca Ellis" last="Dutch">Rebecca Ellis Dutch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA rdutc2@uky.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29669880</idno>
<idno type="pmid">29669880</idno>
<idno type="doi">10.1128/mSphere.00047-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000A08</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A08</idno>
<idno type="wicri:Area/PubMed/Curation">000A08</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A08</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000944</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000944</idno>
<idno type="wicri:Area/Ncbi/Merge">002F29</idno>
<idno type="wicri:Area/Ncbi/Curation">002F29</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002F29</idno>
<idno type="wicri:Area/Main/Merge">000C11</idno>
<idno type="wicri:Area/Main/Curation">000C09</idno>
<idno type="wicri:Area/Main/Exploration">000C09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association
<i>In Vitro</i>
.</title>
<author>
<name sortKey="Webb, Stacy R" sort="Webb, Stacy R" uniqKey="Webb S" first="Stacy R" last="Webb">Stacy R. Webb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Stacy E" sort="Smith, Stacy E" uniqKey="Smith S" first="Stacy E" last="Smith">Stacy E. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fried, Michael G" sort="Fried, Michael G" uniqKey="Fried M" first="Michael G" last="Fried">Michael G. Fried</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dutch, Rebecca Ellis" sort="Dutch, Rebecca Ellis" uniqKey="Dutch R" first="Rebecca Ellis" last="Dutch">Rebecca Ellis Dutch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA rdutc2@uky.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSphere</title>
<idno type="eISSN">2379-5042</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ebolavirus (chemistry)</term>
<term>Ebolavirus (physiology)</term>
<term>Glycoproteins (chemistry)</term>
<term>Membrane Fusion</term>
<term>Orthomyxoviridae (chemistry)</term>
<term>Orthomyxoviridae (physiology)</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Protein Stability</term>
<term>Rabies virus (chemistry)</term>
<term>Rabies virus (physiology)</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (physiology)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Fusion Proteins (chemistry)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Ebolavirus ()</term>
<term>Ebolavirus (physiologie)</term>
<term>Fusion membranaire</term>
<term>Glycoprotéines ()</term>
<term>Multimérisation de protéines</term>
<term>Orthomyxoviridae ()</term>
<term>Orthomyxoviridae (physiologie)</term>
<term>Protéines de fusion virale ()</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Pénétration virale</term>
<term>Stabilité protéique</term>
<term>Virus de la rage ()</term>
<term>Virus de la rage (physiologie)</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glycoproteins</term>
<term>Viral Envelope Proteins</term>
<term>Viral Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Ebolavirus</term>
<term>Orthomyxoviridae</term>
<term>Rabies virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Ebolavirus</term>
<term>Orthomyxoviridae</term>
<term>Virus de la rage</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ebolavirus</term>
<term>Orthomyxoviridae</term>
<term>Rabies virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Membrane Fusion</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Protein Stability</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Ebolavirus</term>
<term>Fusion membranaire</term>
<term>Glycoprotéines</term>
<term>Multimérisation de protéines</term>
<term>Orthomyxoviridae</term>
<term>Protéines de fusion virale</term>
<term>Protéines de l'enveloppe virale</term>
<term>Pénétration virale</term>
<term>Stabilité protéique</term>
<term>Virus de la rage</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families.
<b>IMPORTANCE</b>
Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens-Ebola virus, influenza virus, SARS CoV, and rabies virus-self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Kentucky</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Kentucky">
<name sortKey="Webb, Stacy R" sort="Webb, Stacy R" uniqKey="Webb S" first="Stacy R" last="Webb">Stacy R. Webb</name>
</region>
<name sortKey="Dutch, Rebecca Ellis" sort="Dutch, Rebecca Ellis" uniqKey="Dutch R" first="Rebecca Ellis" last="Dutch">Rebecca Ellis Dutch</name>
<name sortKey="Fried, Michael G" sort="Fried, Michael G" uniqKey="Fried M" first="Michael G" last="Fried">Michael G. Fried</name>
<name sortKey="Smith, Stacy E" sort="Smith, Stacy E" uniqKey="Smith S" first="Stacy E" last="Smith">Stacy E. Smith</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29669880
   |texte=   Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29669880" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021