Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro.

Identifieur interne : 002F29 ( Ncbi/Merge ); précédent : 002F28; suivant : 002F30

Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro.

Auteurs : Stacy R. Webb [États-Unis] ; Stacy E. Smith [États-Unis] ; Michael G. Fried [États-Unis] ; Rebecca Ellis Dutch [États-Unis]

Source :

RBID : pubmed:29669880

Descripteurs français

English descriptors

Abstract

Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families.IMPORTANCE Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens-Ebola virus, influenza virus, SARS CoV, and rabies virus-self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development.

DOI: 10.1128/mSphere.00047-18
PubMed: 29669880

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:29669880

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association
<i>In Vitro</i>
.</title>
<author>
<name sortKey="Webb, Stacy R" sort="Webb, Stacy R" uniqKey="Webb S" first="Stacy R" last="Webb">Stacy R. Webb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Stacy E" sort="Smith, Stacy E" uniqKey="Smith S" first="Stacy E" last="Smith">Stacy E. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fried, Michael G" sort="Fried, Michael G" uniqKey="Fried M" first="Michael G" last="Fried">Michael G. Fried</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dutch, Rebecca Ellis" sort="Dutch, Rebecca Ellis" uniqKey="Dutch R" first="Rebecca Ellis" last="Dutch">Rebecca Ellis Dutch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA rdutc2@uky.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29669880</idno>
<idno type="pmid">29669880</idno>
<idno type="doi">10.1128/mSphere.00047-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000A08</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A08</idno>
<idno type="wicri:Area/PubMed/Curation">000A08</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A08</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000944</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000944</idno>
<idno type="wicri:Area/Ncbi/Merge">002F29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association
<i>In Vitro</i>
.</title>
<author>
<name sortKey="Webb, Stacy R" sort="Webb, Stacy R" uniqKey="Webb S" first="Stacy R" last="Webb">Stacy R. Webb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smith, Stacy E" sort="Smith, Stacy E" uniqKey="Smith S" first="Stacy E" last="Smith">Stacy E. Smith</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fried, Michael G" sort="Fried, Michael G" uniqKey="Fried M" first="Michael G" last="Fried">Michael G. Fried</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dutch, Rebecca Ellis" sort="Dutch, Rebecca Ellis" uniqKey="Dutch R" first="Rebecca Ellis" last="Dutch">Rebecca Ellis Dutch</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA rdutc2@uky.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSphere</title>
<idno type="eISSN">2379-5042</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ebolavirus (chemistry)</term>
<term>Ebolavirus (physiology)</term>
<term>Glycoproteins (chemistry)</term>
<term>Membrane Fusion</term>
<term>Orthomyxoviridae (chemistry)</term>
<term>Orthomyxoviridae (physiology)</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Protein Stability</term>
<term>Rabies virus (chemistry)</term>
<term>Rabies virus (physiology)</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (physiology)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Fusion Proteins (chemistry)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Ebolavirus ()</term>
<term>Ebolavirus (physiologie)</term>
<term>Fusion membranaire</term>
<term>Glycoprotéines ()</term>
<term>Multimérisation de protéines</term>
<term>Orthomyxoviridae ()</term>
<term>Orthomyxoviridae (physiologie)</term>
<term>Protéines de fusion virale ()</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Pénétration virale</term>
<term>Stabilité protéique</term>
<term>Virus de la rage ()</term>
<term>Virus de la rage (physiologie)</term>
<term>Virus du SRAS ()</term>
<term>Virus du SRAS (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glycoproteins</term>
<term>Viral Envelope Proteins</term>
<term>Viral Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Ebolavirus</term>
<term>Orthomyxoviridae</term>
<term>Rabies virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Ebolavirus</term>
<term>Orthomyxoviridae</term>
<term>Virus de la rage</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ebolavirus</term>
<term>Orthomyxoviridae</term>
<term>Rabies virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Membrane Fusion</term>
<term>Protein Domains</term>
<term>Protein Multimerization</term>
<term>Protein Stability</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Ebolavirus</term>
<term>Fusion membranaire</term>
<term>Glycoprotéines</term>
<term>Multimérisation de protéines</term>
<term>Orthomyxoviridae</term>
<term>Protéines de fusion virale</term>
<term>Protéines de l'enveloppe virale</term>
<term>Pénétration virale</term>
<term>Stabilité protéique</term>
<term>Virus de la rage</term>
<term>Virus du SRAS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families.
<b>IMPORTANCE</b>
Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens-Ebola virus, influenza virus, SARS CoV, and rabies virus-self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29669880</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">2379-5042</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
<Month>04</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>mSphere</Title>
<ISOAbbreviation>mSphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association
<i>In Vitro</i>
.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00047-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSphere.00047-18</ELocationID>
<Abstract>
<AbstractText>Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details of the role of the TMD in these fusion events remain unclear. Previously, we demonstrated that isolated paramyxovirus fusion protein TMDs associate in a monomer-trimer equilibrium, using sedimentation equilibrium analytical ultracentrifugation. Using a similar approach, the work presented here indicates that trimeric interactions also occur between the fusion protein TMDs of Ebola virus, influenza virus, severe acute respiratory syndrome coronavirus (SARS CoV), and rabies virus. Our results suggest that TM-TM interactions are important in the fusion protein function of diverse viral families.
<b>IMPORTANCE</b>
Many important human pathogens are enveloped viruses that utilize membrane-bound glycoproteins to mediate viral entry. Factors that contribute to the stability of these glycoproteins have been identified in the ectodomain of several viral fusion proteins, including residues within the soluble ectodomain. Although it is often thought to simply act as an anchor, the transmembrane domain of viral fusion proteins has been implicated in protein stability and function as well. Here, using a biophysical approach, we demonstrated that the fusion protein transmembrane domains of several deadly pathogens-Ebola virus, influenza virus, SARS CoV, and rabies virus-self-associate. This observation across various viral families suggests that transmembrane domain interactions may be broadly relevant and serve as a new target for therapeutic development.</AbstractText>
<CopyrightInformation>Copyright © 2018 Webb et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Webb</LastName>
<ForeName>Stacy R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Stacy E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fried</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dutch</LastName>
<ForeName>Rebecca Ellis</ForeName>
<Initials>RE</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA rdutc2@uky.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI051517</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSphere</MedlineTA>
<NlmUniqueID>101674533</NlmUniqueID>
<ISSNLinking>2379-5042</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006023">Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014760">Viral Fusion Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029043" MajorTopicYN="N">Ebolavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006023" MajorTopicYN="N">Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008561" MajorTopicYN="N">Membrane Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009975" MajorTopicYN="N">Orthomyxoviridae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="Y">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055550" MajorTopicYN="N">Protein Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011820" MajorTopicYN="N">Rabies virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014760" MajorTopicYN="N">Viral Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ebola virus</Keyword>
<Keyword MajorTopicYN="Y">SARS</Keyword>
<Keyword MajorTopicYN="Y">fusion protein</Keyword>
<Keyword MajorTopicYN="Y">influenza</Keyword>
<Keyword MajorTopicYN="Y">rabies</Keyword>
<Keyword MajorTopicYN="Y">transmembrane domain</Keyword>
<Keyword MajorTopicYN="Y">virus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29669880</ArticleId>
<ArticleId IdType="pii">3/2/e00047-18</ArticleId>
<ArticleId IdType="doi">10.1128/mSphere.00047-18</ArticleId>
<ArticleId IdType="pmc">PMC5907656</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2016 Jan 05;12(1):e1005373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26730950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Jun;10(6):1821-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10359599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):1056-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26712026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2008;84:181-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Apr;11(4):1143-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10749920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Dec 13;288(50):35726-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jan 28;76(2):383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8293471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jan 5;439(7072):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Mar;86(6):3003-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26526-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jul 09;6:7688</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26158910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1995 Jul;76 ( Pt 7):1541-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9049361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2009 Dec 24;6:230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20034394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1985 Sep;3(3 Suppl):245-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3877382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2014 Apr;5:24-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24530984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Sep 29;90(20):9172-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27489276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Nov;11(11):3765-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11071905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Jul;15(7):690-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Oct;87(20):10980-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23903846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(18):9900-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17626104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):863-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1993 Sep;122(6):1253-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8397215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Dec 08;11(12):e1005322</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26646856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Oct 23;514(7523):455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25296255</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Kentucky</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Kentucky">
<name sortKey="Webb, Stacy R" sort="Webb, Stacy R" uniqKey="Webb S" first="Stacy R" last="Webb">Stacy R. Webb</name>
</region>
<name sortKey="Dutch, Rebecca Ellis" sort="Dutch, Rebecca Ellis" uniqKey="Dutch R" first="Rebecca Ellis" last="Dutch">Rebecca Ellis Dutch</name>
<name sortKey="Fried, Michael G" sort="Fried, Michael G" uniqKey="Fried M" first="Michael G" last="Fried">Michael G. Fried</name>
<name sortKey="Smith, Stacy E" sort="Smith, Stacy E" uniqKey="Smith S" first="Stacy E" last="Smith">Stacy E. Smith</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002F29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:29669880
   |texte=   Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:29669880" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021