Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The structure of a rigorously conserved RNA element within the SARS virus genome.

Identifieur interne : 004580 ( Main/Curation ); précédent : 004579; suivant : 004581

The structure of a rigorously conserved RNA element within the SARS virus genome.

Auteurs : Michael P. Robertson [États-Unis] ; Haller Igel ; Robert Baertsch ; David Haussler ; Manuel Ares ; William G. Scott

Source :

RBID : pubmed:15630477

Descripteurs français

English descriptors

Abstract

We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m) RNA element of the SARS virus genome to 2.7-A resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3' end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90 degrees kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold.

DOI: 10.1371/journal.pbio.0030005
PubMed: 15630477

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15630477

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The structure of a rigorously conserved RNA element within the SARS virus genome.</title>
<author>
<name sortKey="Robertson, Michael P" sort="Robertson, Michael P" uniqKey="Robertson M" first="Michael P" last="Robertson">Michael P. Robertson</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Center for the Molecular Biology of RNA, University of California, Santa Cruz, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for the Molecular Biology of RNA, University of California, Santa Cruz</wicri:regionArea>
<wicri:noRegion>Santa Cruz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Igel, Haller" sort="Igel, Haller" uniqKey="Igel H" first="Haller" last="Igel">Haller Igel</name>
</author>
<author>
<name sortKey="Baertsch, Robert" sort="Baertsch, Robert" uniqKey="Baertsch R" first="Robert" last="Baertsch">Robert Baertsch</name>
</author>
<author>
<name sortKey="Haussler, David" sort="Haussler, David" uniqKey="Haussler D" first="David" last="Haussler">David Haussler</name>
</author>
<author>
<name sortKey="Ares, Manuel" sort="Ares, Manuel" uniqKey="Ares M" first="Manuel" last="Ares">Manuel Ares</name>
</author>
<author>
<name sortKey="Scott, William G" sort="Scott, William G" uniqKey="Scott W" first="William G" last="Scott">William G. Scott</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15630477</idno>
<idno type="pmid">15630477</idno>
<idno type="doi">10.1371/journal.pbio.0030005</idno>
<idno type="wicri:Area/PubMed/Corpus">002968</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002968</idno>
<idno type="wicri:Area/PubMed/Curation">002968</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002968</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002414</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002414</idno>
<idno type="wicri:Area/Ncbi/Merge">000C97</idno>
<idno type="wicri:Area/Ncbi/Curation">000C97</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000C97</idno>
<idno type="wicri:Area/Main/Merge">004817</idno>
<idno type="wicri:Area/Main/Curation">004580</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The structure of a rigorously conserved RNA element within the SARS virus genome.</title>
<author>
<name sortKey="Robertson, Michael P" sort="Robertson, Michael P" uniqKey="Robertson M" first="Michael P" last="Robertson">Michael P. Robertson</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Center for the Molecular Biology of RNA, University of California, Santa Cruz, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for the Molecular Biology of RNA, University of California, Santa Cruz</wicri:regionArea>
<wicri:noRegion>Santa Cruz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Igel, Haller" sort="Igel, Haller" uniqKey="Igel H" first="Haller" last="Igel">Haller Igel</name>
</author>
<author>
<name sortKey="Baertsch, Robert" sort="Baertsch, Robert" uniqKey="Baertsch R" first="Robert" last="Baertsch">Robert Baertsch</name>
</author>
<author>
<name sortKey="Haussler, David" sort="Haussler, David" uniqKey="Haussler D" first="David" last="Haussler">David Haussler</name>
</author>
<author>
<name sortKey="Ares, Manuel" sort="Ares, Manuel" uniqKey="Ares M" first="Manuel" last="Ares">Manuel Ares</name>
</author>
<author>
<name sortKey="Scott, William G" sort="Scott, William G" uniqKey="Scott W" first="William G" last="Scott">William G. Scott</name>
</author>
</analytic>
<series>
<title level="j">PLoS biology</title>
<idno type="eISSN">1545-7885</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Nucleic Acid Conformation</term>
<term>Purines (chemistry)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Viral (chemistry)</term>
<term>SARS Virus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>ARN viral ()</term>
<term>Conformation d'acide nucléique</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Mutation</term>
<term>Purines ()</term>
<term>Sites de fixation</term>
<term>Séquence conservée</term>
<term>Virus du SRAS (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Purines</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Nucleic Acid Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN viral</term>
<term>Conformation d'acide nucléique</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Mutation</term>
<term>Purines</term>
<term>Sites de fixation</term>
<term>Séquence conservée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m) RNA element of the SARS virus genome to 2.7-A resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3' end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90 degrees kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004580 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 004580 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15630477
   |texte=   The structure of a rigorously conserved RNA element within the SARS virus genome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:15630477" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021