Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The structure of a rigorously conserved RNA element within the SARS virus genome.

Identifieur interne : 000C97 ( Ncbi/Merge ); précédent : 000C96; suivant : 000C98

The structure of a rigorously conserved RNA element within the SARS virus genome.

Auteurs : Michael P. Robertson [États-Unis] ; Haller Igel ; Robert Baertsch ; David Haussler ; Manuel Ares ; William G. Scott

Source :

RBID : pubmed:15630477

Descripteurs français

English descriptors

Abstract

We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m) RNA element of the SARS virus genome to 2.7-A resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3' end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90 degrees kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold.

DOI: 10.1371/journal.pbio.0030005
PubMed: 15630477

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15630477

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The structure of a rigorously conserved RNA element within the SARS virus genome.</title>
<author>
<name sortKey="Robertson, Michael P" sort="Robertson, Michael P" uniqKey="Robertson M" first="Michael P" last="Robertson">Michael P. Robertson</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Center for the Molecular Biology of RNA, University of California, Santa Cruz, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for the Molecular Biology of RNA, University of California, Santa Cruz</wicri:regionArea>
<wicri:noRegion>Santa Cruz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Igel, Haller" sort="Igel, Haller" uniqKey="Igel H" first="Haller" last="Igel">Haller Igel</name>
</author>
<author>
<name sortKey="Baertsch, Robert" sort="Baertsch, Robert" uniqKey="Baertsch R" first="Robert" last="Baertsch">Robert Baertsch</name>
</author>
<author>
<name sortKey="Haussler, David" sort="Haussler, David" uniqKey="Haussler D" first="David" last="Haussler">David Haussler</name>
</author>
<author>
<name sortKey="Ares, Manuel" sort="Ares, Manuel" uniqKey="Ares M" first="Manuel" last="Ares">Manuel Ares</name>
</author>
<author>
<name sortKey="Scott, William G" sort="Scott, William G" uniqKey="Scott W" first="William G" last="Scott">William G. Scott</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15630477</idno>
<idno type="pmid">15630477</idno>
<idno type="doi">10.1371/journal.pbio.0030005</idno>
<idno type="wicri:Area/PubMed/Corpus">002968</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002968</idno>
<idno type="wicri:Area/PubMed/Curation">002968</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002968</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002414</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002414</idno>
<idno type="wicri:Area/Ncbi/Merge">000C97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The structure of a rigorously conserved RNA element within the SARS virus genome.</title>
<author>
<name sortKey="Robertson, Michael P" sort="Robertson, Michael P" uniqKey="Robertson M" first="Michael P" last="Robertson">Michael P. Robertson</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Center for the Molecular Biology of RNA, University of California, Santa Cruz, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for the Molecular Biology of RNA, University of California, Santa Cruz</wicri:regionArea>
<wicri:noRegion>Santa Cruz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Igel, Haller" sort="Igel, Haller" uniqKey="Igel H" first="Haller" last="Igel">Haller Igel</name>
</author>
<author>
<name sortKey="Baertsch, Robert" sort="Baertsch, Robert" uniqKey="Baertsch R" first="Robert" last="Baertsch">Robert Baertsch</name>
</author>
<author>
<name sortKey="Haussler, David" sort="Haussler, David" uniqKey="Haussler D" first="David" last="Haussler">David Haussler</name>
</author>
<author>
<name sortKey="Ares, Manuel" sort="Ares, Manuel" uniqKey="Ares M" first="Manuel" last="Ares">Manuel Ares</name>
</author>
<author>
<name sortKey="Scott, William G" sort="Scott, William G" uniqKey="Scott W" first="William G" last="Scott">William G. Scott</name>
</author>
</analytic>
<series>
<title level="j">PLoS biology</title>
<idno type="eISSN">1545-7885</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Nucleic Acid Conformation</term>
<term>Purines (chemistry)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Viral (chemistry)</term>
<term>SARS Virus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>ARN viral ()</term>
<term>Conformation d'acide nucléique</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Mutation</term>
<term>Purines ()</term>
<term>Sites de fixation</term>
<term>Séquence conservée</term>
<term>Virus du SRAS (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Purines</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Conserved Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Nucleic Acid Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN viral</term>
<term>Conformation d'acide nucléique</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Mutation</term>
<term>Purines</term>
<term>Sites de fixation</term>
<term>Séquence conservée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m) RNA element of the SARS virus genome to 2.7-A resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3' end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90 degrees kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15630477</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1545-7885</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>PLoS biology</Title>
<ISOAbbreviation>PLoS Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The structure of a rigorously conserved RNA element within the SARS virus genome.</ArticleTitle>
<Pagination>
<MedlinePgn>e5</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m) RNA element of the SARS virus genome to 2.7-A resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3' end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90 degrees kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Robertson</LastName>
<ForeName>Michael P</ForeName>
<Initials>MP</Initials>
<AffiliationInfo>
<Affiliation>The Center for the Molecular Biology of RNA, University of California, Santa Cruz, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Igel</LastName>
<ForeName>Haller</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baertsch</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haussler</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ares</LastName>
<ForeName>Manuel</ForeName>
<Initials>M</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Scott</LastName>
<ForeName>William G</ForeName>
<Initials>WG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1D7Q</AccessionNumber>
<AccessionNumber>1HR0</AccessionNumber>
<AccessionNumber>1J5E</AccessionNumber>
<AccessionNumber>1QZ8</AccessionNumber>
<AccessionNumber>1UW7</AccessionNumber>
<AccessionNumber>1XJR</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM087721</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>12</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Biol</MedlineTA>
<NlmUniqueID>101183755</NlmUniqueID>
<ISSNLinking>1544-9173</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011687">Purines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W60KTZ3IZY</RegistryNumber>
<NameOfSubstance UI="C030985">purine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="Y">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011687" MajorTopicYN="N">Purines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>08</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>10</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15630477</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pbio.0030005</ArticleId>
<ArticleId IdType="pmc">PMC539059</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2000 Jan;5(1):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10678173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Feb 18;287(5456):1232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10678824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3792-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 2003 May-Jun;95(3-4):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12867078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1990 Dec;4(12A):2132-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2269428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Jul 12;253(5016):191-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1712983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2003 Jan 1;10(Pt 1):23-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12511787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Feb 15;19(4):489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10675317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Nov;11(11):1423-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14604532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 21;407(6802):327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2025413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1997 Dec;13(12):497-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9433140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2000 Nov;7 Suppl:954-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11103998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Aug 5;158(3):395-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12163463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Sep 20;273(5282):1696-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8781229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1998 Apr;79 ( Pt 4):715-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9568965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15189-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Aug;12(2):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14536072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Mar 17;16(6):1436-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9135158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 May 18;308(5):919-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1996 Mar;21(3):81-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8882578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Mar;9(3):355-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12592009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13665-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11707581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2004 Feb;12(2):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39330-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 19;291(5503):498-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11228145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 15;277(11):8906-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Nov 18;432(7015):411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15549109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Oct;9(10):1198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13130134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Sep;59(Pt 9):1628-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2003 Mar;28(3):130-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12633992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2002 Jun;9(6):431-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Jul;11(7):815-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12842044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1990 Oct;6(4):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1701686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 May 15;8(5):527-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 15;31(36):8406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1382577</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ares, Manuel" sort="Ares, Manuel" uniqKey="Ares M" first="Manuel" last="Ares">Manuel Ares</name>
<name sortKey="Baertsch, Robert" sort="Baertsch, Robert" uniqKey="Baertsch R" first="Robert" last="Baertsch">Robert Baertsch</name>
<name sortKey="Haussler, David" sort="Haussler, David" uniqKey="Haussler D" first="David" last="Haussler">David Haussler</name>
<name sortKey="Igel, Haller" sort="Igel, Haller" uniqKey="Igel H" first="Haller" last="Igel">Haller Igel</name>
<name sortKey="Scott, William G" sort="Scott, William G" uniqKey="Scott W" first="William G" last="Scott">William G. Scott</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Robertson, Michael P" sort="Robertson, Michael P" uniqKey="Robertson M" first="Michael P" last="Robertson">Michael P. Robertson</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000C97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:15630477
   |texte=   The structure of a rigorously conserved RNA element within the SARS virus genome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:15630477" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021