Serveur d'exploration Posturo

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Readaptation Treatment of Mal de Debarquement Syndrome With a Virtual Reality App: A Pilot Study.

Identifieur interne : 000016 ( Main/Corpus ); précédent : 000015; suivant : 000017

Readaptation Treatment of Mal de Debarquement Syndrome With a Virtual Reality App: A Pilot Study.

Auteurs : Sergei B. Yakushin ; Reilly Zink ; Brian C. Clark ; Chang Liu

Source :

RBID : pubmed:33013617

Abstract

Mal de Debarquement syndrome (MdDS) is composed of constant phantom sensations of motion, which are frequently accompanied by increased sensitivity to light, inability to walk on a patterned floor, the sensation of ear fullness, head pressure, anxiety, and depression. This disabling condition generally occurs in premenopausal women within 2 days after prolonged passive motion (e.g., travel on a cruise ship, plane, or in a car). It has been previously hypothesized that MdDS is the result of maladaptive changes in the polysynaptic vestibulo-ocular reflex (VOR) pathway called velocity storage. Past research indicates that full-field optokinetic stimulation is an optimal way to activate velocity storage. Unfortunately, such devices are typically bulky and not commonly available. We questioned whether virtual reality (VR) goggles with a restricted visual field could effectively simulate a laboratory environment for MdDS treatment. A stripes program for optokinetic stimulation was implemented using Google Daydream Viewer. Five female patients (42 ± 10 years; range 26-50), whose average MdDS symptom duration was 2 months, participated in this study. Four patients had symptoms triggered by prolonged passive motion, and in one, symptoms spontaneously occurred. Symptom severity was self-scored by patients on a scale of 0-10, where 0 is no symptoms at all and 10 is the strongest symptoms that the patient could imagine. Static posturography was obtained to determine objective changes in body motion. The treatment was considered effective if the patient's subjective score improved by at least 50%. All five patients reported immediate improvement. On 2-month follow-ups, symptoms returned only in one patient. These data provide proof of concept for the limited-visual-field goggles potentially having clinical utility as a substitute for full-field optokinetic stimulation in treating patients with MdDS in clinics or via telemedicine.

DOI: 10.3389/fneur.2020.00814
PubMed: 33013617
PubMed Central: PMC7461907

Links to Exploration step

pubmed:33013617

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Readaptation Treatment of Mal de Debarquement Syndrome With a Virtual Reality App: A Pilot Study.</title>
<author>
<name sortKey="Yakushin, Sergei B" sort="Yakushin, Sergei B" uniqKey="Yakushin S" first="Sergei B" last="Yakushin">Sergei B. Yakushin</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zink, Reilly" sort="Zink, Reilly" uniqKey="Zink R" first="Reilly" last="Zink">Reilly Zink</name>
<affiliation>
<nlm:affiliation>Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clark, Brian C" sort="Clark, Brian C" uniqKey="Clark B" first="Brian C" last="Clark">Brian C. Clark</name>
<affiliation>
<nlm:affiliation>Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biomedical Sciences, Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chang" sort="Liu, Chang" uniqKey="Liu C" first="Chang" last="Liu">Chang Liu</name>
<affiliation>
<nlm:affiliation>Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33013617</idno>
<idno type="pmid">33013617</idno>
<idno type="doi">10.3389/fneur.2020.00814</idno>
<idno type="pmc">PMC7461907</idno>
<idno type="wicri:Area/Main/Corpus">000016</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000016</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Readaptation Treatment of Mal de Debarquement Syndrome With a Virtual Reality App: A Pilot Study.</title>
<author>
<name sortKey="Yakushin, Sergei B" sort="Yakushin, Sergei B" uniqKey="Yakushin S" first="Sergei B" last="Yakushin">Sergei B. Yakushin</name>
<affiliation>
<nlm:affiliation>Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zink, Reilly" sort="Zink, Reilly" uniqKey="Zink R" first="Reilly" last="Zink">Reilly Zink</name>
<affiliation>
<nlm:affiliation>Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clark, Brian C" sort="Clark, Brian C" uniqKey="Clark B" first="Brian C" last="Clark">Brian C. Clark</name>
<affiliation>
<nlm:affiliation>Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Biomedical Sciences, Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chang" sort="Liu, Chang" uniqKey="Liu C" first="Chang" last="Liu">Chang Liu</name>
<affiliation>
<nlm:affiliation>Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in neurology</title>
<idno type="ISSN">1664-2295</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mal de Debarquement syndrome (MdDS) is composed of constant phantom sensations of motion, which are frequently accompanied by increased sensitivity to light, inability to walk on a patterned floor, the sensation of ear fullness, head pressure, anxiety, and depression. This disabling condition generally occurs in premenopausal women within 2 days after prolonged passive motion (e.g., travel on a cruise ship, plane, or in a car). It has been previously hypothesized that MdDS is the result of maladaptive changes in the polysynaptic vestibulo-ocular reflex (VOR) pathway called velocity storage. Past research indicates that full-field optokinetic stimulation is an optimal way to activate velocity storage. Unfortunately, such devices are typically bulky and not commonly available. We questioned whether virtual reality (VR) goggles with a restricted visual field could effectively simulate a laboratory environment for MdDS treatment. A stripes program for optokinetic stimulation was implemented using Google Daydream Viewer. Five female patients (42 ± 10 years; range 26-50), whose average MdDS symptom duration was 2 months, participated in this study. Four patients had symptoms triggered by prolonged passive motion, and in one, symptoms spontaneously occurred. Symptom severity was self-scored by patients on a scale of 0-10, where 0 is no symptoms at all and 10 is the strongest symptoms that the patient could imagine. Static posturography was obtained to determine objective changes in body motion. The treatment was considered effective if the patient's subjective score improved by at least 50%. All five patients reported immediate improvement. On 2-month follow-ups, symptoms returned only in one patient. These data provide proof of concept for the limited-visual-field goggles potentially having clinical utility as a substitute for full-field optokinetic stimulation in treating patients with MdDS in clinics or via telemedicine.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33013617</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-2295</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in neurology</Title>
<ISOAbbreviation>Front Neurol</ISOAbbreviation>
</Journal>
<ArticleTitle>Readaptation Treatment of Mal de Debarquement Syndrome With a Virtual Reality App: A Pilot Study.</ArticleTitle>
<Pagination>
<MedlinePgn>814</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fneur.2020.00814</ELocationID>
<Abstract>
<AbstractText>Mal de Debarquement syndrome (MdDS) is composed of constant phantom sensations of motion, which are frequently accompanied by increased sensitivity to light, inability to walk on a patterned floor, the sensation of ear fullness, head pressure, anxiety, and depression. This disabling condition generally occurs in premenopausal women within 2 days after prolonged passive motion (e.g., travel on a cruise ship, plane, or in a car). It has been previously hypothesized that MdDS is the result of maladaptive changes in the polysynaptic vestibulo-ocular reflex (VOR) pathway called velocity storage. Past research indicates that full-field optokinetic stimulation is an optimal way to activate velocity storage. Unfortunately, such devices are typically bulky and not commonly available. We questioned whether virtual reality (VR) goggles with a restricted visual field could effectively simulate a laboratory environment for MdDS treatment. A stripes program for optokinetic stimulation was implemented using Google Daydream Viewer. Five female patients (42 ± 10 years; range 26-50), whose average MdDS symptom duration was 2 months, participated in this study. Four patients had symptoms triggered by prolonged passive motion, and in one, symptoms spontaneously occurred. Symptom severity was self-scored by patients on a scale of 0-10, where 0 is no symptoms at all and 10 is the strongest symptoms that the patient could imagine. Static posturography was obtained to determine objective changes in body motion. The treatment was considered effective if the patient's subjective score improved by at least 50%. All five patients reported immediate improvement. On 2-month follow-ups, symptoms returned only in one patient. These data provide proof of concept for the limited-visual-field goggles potentially having clinical utility as a substitute for full-field optokinetic stimulation in treating patients with MdDS in clinics or via telemedicine.</AbstractText>
<CopyrightInformation>Copyright © 2020 Yakushin, Zink, Clark and Liu.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yakushin</LastName>
<ForeName>Sergei B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zink</LastName>
<ForeName>Reilly</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clark</LastName>
<ForeName>Brian C</ForeName>
<Initials>BC</Initials>
<AffiliationInfo>
<Affiliation>Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biomedical Sciences, Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 DC018390</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Neurol</MedlineTA>
<NlmUniqueID>101546899</NlmUniqueID>
<ISSNLinking>1664-2295</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Mal de Debarquement syndrome</Keyword>
<Keyword MajorTopicYN="N">bobbing</Keyword>
<Keyword MajorTopicYN="N">readaptation</Keyword>
<Keyword MajorTopicYN="N">rocking</Keyword>
<Keyword MajorTopicYN="N">swaying</Keyword>
<Keyword MajorTopicYN="N">velocity storage</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>15</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33013617</ArticleId>
<ArticleId IdType="doi">10.3389/fneur.2020.00814</ArticleId>
<ArticleId IdType="pmc">PMC7461907</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Pflugers Arch. 1972;332:Suppl 332:R98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4538138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1994;99(2):347-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Psychol. 1953 Sep;46(3):162-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13084862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2020 Jan 1;123(1):329-345</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31747361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1979 Apr 2;35(2):229-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">108122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vision Res. 1984;24(9):969-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6506484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vestib Res. 1993 Summer;3(2):181-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8275253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Otolaryngol. 1959 Mar-Apr;50(2):95-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13636842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2002 Jul;145(1):1-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 1998 Nov;80(5):2391-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9819251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 1999 Jul;82(1):416-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10400968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Klin Monbl Augenheilkd. 2004 May;221(5):390-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15162288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1977 Nov 24;30(2-3):323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">413726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vision Res. 1986;26(7):1155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3798750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2018 Nov;236(11):3031-3041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30120498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2003 Sep;152(1):137-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12879171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1987 Dec;393:703-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3446808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurol. 2018 Feb 05;9:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29459843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1981;374:504-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6951449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurol. 2014 Jul 15;5:124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25076935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1973 Mar 19;16(5):476-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4695777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1992;92(2):209-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1493862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1992 May 22;581(1):175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1323367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 1991 Oct;66(4):1422-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1761991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurol. 2017 Aug 16;8:386</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28861030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2008 May;187(1):117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18231780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aviat Space Environ Med. 1981 Feb;52(2):73-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6971094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2009 Jun;195(4):553-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1983;52(2):248-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6605874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1991;87(3):505-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1783021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2001 Oct;942:328-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11710475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 1998 Dec;80(6):3077-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 1971 Jul;34(4):635-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5000362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1992 May 22;656:933-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1318014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2003 Oct;152(3):335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12879175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2005 Apr;93(4):2028-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Assoc Res Otolaryngol. 2018 Dec;19(6):729-739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30251187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1991;84(1):25-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1855562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1976 Apr;256(2):361-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16992507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1974 May;238(3):603-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4546977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurol. 2017 May 05;8:175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28529496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1976 Aug 27;113(2):423-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">953747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1974;21(4):337-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4442493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1983 Jul;340:259-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6604152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Int Med Res. 2011;39(4):1432-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21986145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vestib Res. 1999;9(4):293-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10472042</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PosturoV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000016 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000016 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PosturoV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33013617
   |texte=   Readaptation Treatment of Mal de Debarquement Syndrome With a Virtual Reality App: A Pilot Study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33013617" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PosturoV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 22:38:36 2020. Site generation: Thu Mar 25 16:16:50 2021