La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drug—DNA sequence‐dependent interactions analysed by electric linear dichroism

Identifieur interne : 004D74 ( Main/Exploration ); précédent : 004D73; suivant : 004D75

Drug—DNA sequence‐dependent interactions analysed by electric linear dichroism

Auteurs : Christian Bailly [France, Royaume-Uni] ; Jean-Pierre Hénichart [Belgique] ; Pierre Colson [Belgique] ; Claude Houssier [Belgique]

Source :

RBID : ISTEX:CDC9A412D196E45F4AE2EA12398E299086C179AA

Abstract

The interactions between 20 drugs and a variety of synthetic DNA polymers and natural DNAs were studied by electric linear dischroism (ELD). All compounds tested, including several clinically used antitumour agents, are thought to exert their biological activities mainly by virtue of their abilities to bind to DNA. The selected drugs include intercalating agents with fused and unfused aromatic structures and several groove binders. To examine the role of base composition and base sequence in the binding of these drugs to DNA, ELD experiments were carried out with natural DNAs of widely differing base composition as well as with polynucleotides containing defined alternating and non‐alternating repeating sequences, poly(dA).poly(dT),poly(dA‐dT).poly(dA‐dT),poly(dG).poly(dC) and poly(dG‐dC).poly(dG‐dC). Among intercalating agents, actinomycin D was found to be by far the most GC‐selective. GC selectivity was also observed with an amsacrine‐4‐carboxamidederivative and to a laser extent with methylene blue. In contrast, the binding of amsacrine and 9‐aminoacridine was practically unaffected by varying the GC content of the DNAs. Ethidium bromide, proflavine, mitoxantrone, daunomycin and an ellipticine derivative were found to bind best to alternating purine‐pyrimidine sequences regardless of their nature. ELD measurements provided evidence for non‐specific intercalation of amiloride. A significant AT selectivity was observed with hycanthone and lucanthone. The triphenyl methane dye methyl green was found to exhibit positive and negative dichroism signals at AT and GC sites, respectively, showing that the mode of binding of a drug can change markedly with the DNA base composition. Among minor groove binders, the N‐methylpyrrole carboxamide‐containing antibiotics netropsin and distamycin bound to DNA with very pronounced AT specificity, as expected. More interestingly the dye Hoechst 33258, berenil and a thiazole‐containing lexitropsin elicited negative reduced dichroism in the presence of GC‐rich DNA which is totally inconsistent with a groove binding process. We postulate that these three drugs share with the trypanocide 4′, 6‐diamidino‐2‐phenylindole (DAPI) the property of intercalating at GC‐rich sites and binding to the minor groove of DNA at other sites. Replacement of guanines by inosines (i.e., removal of the protruding exocyclic C‐2 amino group of guanine) restored minor groove binding of DAPI, Hoechst 33258 and berenil. Thus there are several cases where the mode of binding to DNA is directly dependent on the base composition of the polymer. Consequently the ELD technique appears uniquely valuable as a means of investigating the possibility of sequence‐dependent recognition of DNA by drugs.

Url:
DOI: 10.1002/jmr.300050406


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drug—DNA sequence‐dependent interactions analysed by electric linear dichroism</title>
<author>
<name sortKey="Bailly, Christian" sort="Bailly, Christian" uniqKey="Bailly C" first="Christian" last="Bailly">Christian Bailly</name>
</author>
<author>
<name sortKey="Henichart, Jean Ierre" sort="Henichart, Jean Ierre" uniqKey="Henichart J" first="Jean-Pierre" last="Hénichart">Jean-Pierre Hénichart</name>
</author>
<author>
<name sortKey="Colson, Pierre" sort="Colson, Pierre" uniqKey="Colson P" first="Pierre" last="Colson">Pierre Colson</name>
</author>
<author>
<name sortKey="Houssier, Claude" sort="Houssier, Claude" uniqKey="Houssier C" first="Claude" last="Houssier">Claude Houssier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CDC9A412D196E45F4AE2EA12398E299086C179AA</idno>
<date when="1992" year="1992">1992</date>
<idno type="doi">10.1002/jmr.300050406</idno>
<idno type="url">https://api.istex.fr/document/CDC9A412D196E45F4AE2EA12398E299086C179AA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001E52</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001E52</idno>
<idno type="wicri:Area/Istex/Curation">001E50</idno>
<idno type="wicri:Area/Istex/Checkpoint">001C85</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001C85</idno>
<idno type="wicri:doubleKey">0952-3499:1992:Bailly C:drug:dna:sequence</idno>
<idno type="wicri:Area/Main/Merge">005811</idno>
<idno type="wicri:Area/Main/Curation">004D74</idno>
<idno type="wicri:Area/Main/Exploration">004D74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Drug—DNA sequence‐dependent interactions analysed by electric linear dichroism</title>
<author>
<name sortKey="Bailly, Christian" sort="Bailly, Christian" uniqKey="Bailly C" first="Christian" last="Bailly">Christian Bailly</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM Unité 124, Institut de Recherches sur le Cancer, Place de Verdun 59045 Lille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Hauts-de-France</region>
<region type="old region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Lille</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Current Address: Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 IQJ</wicri:regionArea>
<orgName type="university">Université de Cambridge</orgName>
<placeName>
<settlement type="city">Cambridge</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Angleterre de l'Est</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM Unité 124, Institut de Recherches sur le Cancer, Place de Verdun 59045 Lille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Hauts-de-France</region>
<region type="old region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Lille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Henichart, Jean Ierre" sort="Henichart, Jean Ierre" uniqKey="Henichart J" first="Jean-Pierre" last="Hénichart">Jean-Pierre Hénichart</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>UCB Pharmaceuticals, Cheminu du Foriest, Braine‐I' Alleud 1420</wicri:regionArea>
<wicri:noRegion>Braine‐I' Alleud 1420</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Colson, Pierre" sort="Colson, Pierre" uniqKey="Colson P" first="Pierre" last="Colson">Pierre Colson</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratoire de Chimie Macromoléculaire et Chimie Physique, Univerisité de Liège, 4000 Liège</wicri:regionArea>
<placeName>
<region type="province" nuts="2">Province de Liège</region>
<settlement type="city">Liège</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Houssier, Claude" sort="Houssier, Claude" uniqKey="Houssier C" first="Claude" last="Houssier">Claude Houssier</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratoire de Chimie Macromoléculaire et Chimie Physique, Univerisité de Liège, 4000 Liège</wicri:regionArea>
<placeName>
<region type="province" nuts="2">Province de Liège</region>
<settlement type="city">Liège</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Molecular Recognition</title>
<title level="j" type="abbrev">J. Mol. Recognit.</title>
<idno type="ISSN">0952-3499</idno>
<idno type="eISSN">1099-1352</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="1992-12">1992-12</date>
<biblScope unit="volume">5</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="155">155</biblScope>
<biblScope unit="page" to="171">171</biblScope>
</imprint>
<idno type="ISSN">0952-3499</idno>
</series>
<idno type="istex">CDC9A412D196E45F4AE2EA12398E299086C179AA</idno>
<idno type="DOI">10.1002/jmr.300050406</idno>
<idno type="ArticleID">JMR300050406</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3499</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The interactions between 20 drugs and a variety of synthetic DNA polymers and natural DNAs were studied by electric linear dischroism (ELD). All compounds tested, including several clinically used antitumour agents, are thought to exert their biological activities mainly by virtue of their abilities to bind to DNA. The selected drugs include intercalating agents with fused and unfused aromatic structures and several groove binders. To examine the role of base composition and base sequence in the binding of these drugs to DNA, ELD experiments were carried out with natural DNAs of widely differing base composition as well as with polynucleotides containing defined alternating and non‐alternating repeating sequences, poly(dA).poly(dT),poly(dA‐dT).poly(dA‐dT),poly(dG).poly(dC) and poly(dG‐dC).poly(dG‐dC). Among intercalating agents, actinomycin D was found to be by far the most GC‐selective. GC selectivity was also observed with an amsacrine‐4‐carboxamidederivative and to a laser extent with methylene blue. In contrast, the binding of amsacrine and 9‐aminoacridine was practically unaffected by varying the GC content of the DNAs. Ethidium bromide, proflavine, mitoxantrone, daunomycin and an ellipticine derivative were found to bind best to alternating purine‐pyrimidine sequences regardless of their nature. ELD measurements provided evidence for non‐specific intercalation of amiloride. A significant AT selectivity was observed with hycanthone and lucanthone. The triphenyl methane dye methyl green was found to exhibit positive and negative dichroism signals at AT and GC sites, respectively, showing that the mode of binding of a drug can change markedly with the DNA base composition. Among minor groove binders, the N‐methylpyrrole carboxamide‐containing antibiotics netropsin and distamycin bound to DNA with very pronounced AT specificity, as expected. More interestingly the dye Hoechst 33258, berenil and a thiazole‐containing lexitropsin elicited negative reduced dichroism in the presence of GC‐rich DNA which is totally inconsistent with a groove binding process. We postulate that these three drugs share with the trypanocide 4′, 6‐diamidino‐2‐phenylindole (DAPI) the property of intercalating at GC‐rich sites and binding to the minor groove of DNA at other sites. Replacement of guanines by inosines (i.e., removal of the protruding exocyclic C‐2 amino group of guanine) restored minor groove binding of DAPI, Hoechst 33258 and berenil. Thus there are several cases where the mode of binding to DNA is directly dependent on the base composition of the polymer. Consequently the ELD technique appears uniquely valuable as a means of investigating the possibility of sequence‐dependent recognition of DNA by drugs.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Belgique</li>
<li>France</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Angleterre de l'Est</li>
<li>Hauts-de-France</li>
<li>Nord-Pas-de-Calais</li>
<li>Province de Liège</li>
</region>
<settlement>
<li>Cambridge</li>
<li>Lille</li>
<li>Liège</li>
</settlement>
<orgName>
<li>Université de Cambridge</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Hauts-de-France">
<name sortKey="Bailly, Christian" sort="Bailly, Christian" uniqKey="Bailly C" first="Christian" last="Bailly">Christian Bailly</name>
</region>
<name sortKey="Bailly, Christian" sort="Bailly, Christian" uniqKey="Bailly C" first="Christian" last="Bailly">Christian Bailly</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Bailly, Christian" sort="Bailly, Christian" uniqKey="Bailly C" first="Christian" last="Bailly">Christian Bailly</name>
</region>
</country>
<country name="Belgique">
<noRegion>
<name sortKey="Henichart, Jean Ierre" sort="Henichart, Jean Ierre" uniqKey="Henichart J" first="Jean-Pierre" last="Hénichart">Jean-Pierre Hénichart</name>
</noRegion>
<name sortKey="Colson, Pierre" sort="Colson, Pierre" uniqKey="Colson P" first="Pierre" last="Colson">Pierre Colson</name>
<name sortKey="Houssier, Claude" sort="Houssier, Claude" uniqKey="Houssier C" first="Claude" last="Houssier">Claude Houssier</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004D74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004D74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:CDC9A412D196E45F4AE2EA12398E299086C179AA
   |texte=   Drug—DNA sequence‐dependent interactions analysed by electric linear dichroism
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024