La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photochemistry of Saturn's Atmosphere

Identifieur interne : 003998 ( Main/Curation ); précédent : 003997; suivant : 003999

Photochemistry of Saturn's Atmosphere

Auteurs : Julianne I. Moses ; Bruno Bézard [France] ; Emmanuel Lellouch [France] ; G. Randall Gladstone ; Helmut Feuchtgruber [Allemagne] ; Mark Allen

Source :

RBID : ISTEX:79FC56D1DA0A9235A3D8895F07188E2A3528818B

English descriptors

Abstract

To investigate the details of hydrocarbon photochemistry on Saturn, we have developed a one-dimensional diurnally averaged model that couples hydrocarbon and oxygen photochemistry, molecular and eddy diffusion, radiative transfer, and condensation. The model results are compared with observations from the Infrared Space Observatory (ISO) to place tighter constraints on molecular abundances, to better define Saturn's eddy diffusion coefficient profile, and to identify important chemical schemes that control the abundances of the observable hydrocarbons in Saturn's upper atmosphere. From the ISO observations, we determine that the column densities of CH3, CH3C2H, and C4H2 above 10 mbar are 4+2−1.5×1013 cm−2, (1.1±0.3)×1015 cm−2, and (1.2±0.3)×1014 cm−2, respectively. The observed ISO emission features also indicate C2H2 mixing ratios of 1.2+0.9−0.6×10−6 at 0.3 mbar and (2.7±0.8)×10−7 at 1.4 mbar, and a C2H6 mixing ratio of (9±2.5)×10−6 at 0.5 mbar. Upper limits are provided for C2H4, CH2CCH2, C3H8, and C6H2. The sensitivity of the model results to variations in the eddy diffusion coefficient profile, the solar flux, the CH4 photolysis branching ratios, the atomic hydrogen influx, and key reaction rates are discussed in detail. We find that C4H2 and CH3C2H are particularly good tracers of important chemical processes and physical conditions in Saturn's upper atmosphere, and C2H6 is a good tracer of the eddy diffusion coefficient in Saturn's lower stratosphere. The eddy diffusion coefficient must be smaller than ∼3×104 cm2 s−1 at pressures greater than 1 mbar in order to reproduce the C2H6 abundance inferred from ISO observations. The eddy diffusion coefficients in the upper stratosphere could be constrained by observations of CH3 radicals if the low-temperature chemistry of CH3 were better understood. We also discuss the implications of our modeling for aerosol formation in Saturn's lower stratosphere—diacetylene, butane, and water condense between ∼1 and 300 mbar in our model and will dominate stratospheric haze formation at nonauroral latitudes. Our photochemical models will be useful for planning observational sequences and for analyzing data from the upcoming Cassini mission.

Url:
DOI: 10.1006/icar.1999.6270

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:79FC56D1DA0A9235A3D8895F07188E2A3528818B

Curation

No country items

Julianne I. Moses
<affiliation>
<wicri:noCountry code="subField">moses@lpi3.jsc.nasa.govf1</wicri:noCountry>
</affiliation>
G. Randall Gladstone
<affiliation>
<wicri:noCountry code="subField">78228-0510</wicri:noCountry>
</affiliation>
Mark Allen
<affiliation>
<wicri:noCountry code="subField">91109</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<author>
<name sortKey="Moses, Julianne I" sort="Moses, Julianne I" uniqKey="Moses J" first="Julianne I." last="Moses">Julianne I. Moses</name>
</author>
<author>
<name sortKey="Bezard, Bruno" sort="Bezard, Bruno" uniqKey="Bezard B" first="Bruno" last="Bézard">Bruno Bézard</name>
</author>
<author>
<name sortKey="Lellouch, Emmanuel" sort="Lellouch, Emmanuel" uniqKey="Lellouch E" first="Emmanuel" last="Lellouch">Emmanuel Lellouch</name>
</author>
<author>
<name sortKey="Gladstone, G Randall" sort="Gladstone, G Randall" uniqKey="Gladstone G" first="G. Randall" last="Gladstone">G. Randall Gladstone</name>
</author>
<author>
<name sortKey="Feuchtgruber, Helmut" sort="Feuchtgruber, Helmut" uniqKey="Feuchtgruber H" first="Helmut" last="Feuchtgruber">Helmut Feuchtgruber</name>
</author>
<author>
<name sortKey="Allen, Mark" sort="Allen, Mark" uniqKey="Allen M" first="Mark" last="Allen">Mark Allen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:79FC56D1DA0A9235A3D8895F07188E2A3528818B</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1006/icar.1999.6270</idno>
<idno type="url">https://api.istex.fr/document/79FC56D1DA0A9235A3D8895F07188E2A3528818B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F59</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F59</idno>
<idno type="wicri:Area/Istex/Curation">001F57</idno>
<idno type="wicri:Area/Istex/Checkpoint">001091</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001091</idno>
<idno type="wicri:doubleKey">0019-1035:2000:Moses J:photochemistry:of:saturn</idno>
<idno type="wicri:Area/Main/Merge">004049</idno>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DA0AF197299235245290697937CD2FE3A7361212</idno>
<idno type="url">https://api.istex.fr/document/DA0AF197299235245290697937CD2FE3A7361212/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F58</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F58</idno>
<idno type="wicri:Area/Istex/Curation">001F56</idno>
<idno type="wicri:Area/Istex/Checkpoint">001090</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001090</idno>
<idno type="wicri:doubleKey">0019-1035:2000:Moses J:photochemistry:of:saturn</idno>
<idno type="wicri:Area/Main/Merge">004048</idno>
<idno type="wicri:Area/Main/Curation">003998</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<author>
<name sortKey="Moses, Julianne I" sort="Moses, Julianne I" uniqKey="Moses J" first="Julianne I." last="Moses">Julianne I. Moses</name>
<affiliation>
<wicri:noCountry code="subField">moses@lpi3.jsc.nasa.govf1</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bezard, Bruno" sort="Bezard, Bruno" uniqKey="Bezard B" first="Bruno" last="Bézard">Bruno Bézard</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>DESPA, Observatoire de Paris, Meudon, 92195</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lellouch, Emmanuel" sort="Lellouch, Emmanuel" uniqKey="Lellouch E" first="Emmanuel" last="Lellouch">Emmanuel Lellouch</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>DESPA, Observatoire de Paris, Meudon, 92195</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gladstone, G Randall" sort="Gladstone, G Randall" uniqKey="Gladstone G" first="G. Randall" last="Gladstone">G. Randall Gladstone</name>
<affiliation>
<wicri:noCountry code="subField">78228-0510</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Feuchtgruber, Helmut" sort="Feuchtgruber, Helmut" uniqKey="Feuchtgruber H" first="Helmut" last="Feuchtgruber">Helmut Feuchtgruber</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institut für Extraterrestrische Physik, Garching, 85740</wicri:regionArea>
<wicri:noRegion>85740</wicri:noRegion>
<wicri:noRegion>85740</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Allen, Mark" sort="Allen, Mark" uniqKey="Allen M" first="Mark" last="Allen">Mark Allen</name>
<affiliation>
<wicri:noCountry code="subField">91109</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Icarus</title>
<title level="j" type="abbrev">YICAR</title>
<idno type="ISSN">0019-1035</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">143</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="244">244</biblScope>
<biblScope unit="page" to="298">298</biblScope>
</imprint>
<idno type="ISSN">0019-1035</idno>
</series>
<idno type="istex">79FC56D1DA0A9235A3D8895F07188E2A3528818B</idno>
<idno type="DOI">10.1006/icar.1999.6270</idno>
<idno type="PII">S0019-1035(99)96270-X</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0019-1035</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Saturn</term>
<term>atmosphere</term>
<term>atmospheres</term>
<term>composition</term>
<term>infrared observations</term>
<term>interplanetary dust</term>
<term>meteoroids</term>
<term>organic chemistry</term>
<term>photochemistry</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To investigate the details of hydrocarbon photochemistry on Saturn, we have developed a one-dimensional diurnally averaged model that couples hydrocarbon and oxygen photochemistry, molecular and eddy diffusion, radiative transfer, and condensation. The model results are compared with observations from the Infrared Space Observatory (ISO) to place tighter constraints on molecular abundances, to better define Saturn's eddy diffusion coefficient profile, and to identify important chemical schemes that control the abundances of the observable hydrocarbons in Saturn's upper atmosphere. From the ISO observations, we determine that the column densities of CH3, CH3C2H, and C4H2 above 10 mbar are 4+2−1.5×1013 cm−2, (1.1±0.3)×1015 cm−2, and (1.2±0.3)×1014 cm−2, respectively. The observed ISO emission features also indicate C2H2 mixing ratios of 1.2+0.9−0.6×10−6 at 0.3 mbar and (2.7±0.8)×10−7 at 1.4 mbar, and a C2H6 mixing ratio of (9±2.5)×10−6 at 0.5 mbar. Upper limits are provided for C2H4, CH2CCH2, C3H8, and C6H2. The sensitivity of the model results to variations in the eddy diffusion coefficient profile, the solar flux, the CH4 photolysis branching ratios, the atomic hydrogen influx, and key reaction rates are discussed in detail. We find that C4H2 and CH3C2H are particularly good tracers of important chemical processes and physical conditions in Saturn's upper atmosphere, and C2H6 is a good tracer of the eddy diffusion coefficient in Saturn's lower stratosphere. The eddy diffusion coefficient must be smaller than ∼3×104 cm2 s−1 at pressures greater than 1 mbar in order to reproduce the C2H6 abundance inferred from ISO observations. The eddy diffusion coefficients in the upper stratosphere could be constrained by observations of CH3 radicals if the low-temperature chemistry of CH3 were better understood. We also discuss the implications of our modeling for aerosol formation in Saturn's lower stratosphere—diacetylene, butane, and water condense between ∼1 and 300 mbar in our model and will dominate stratospheric haze formation at nonauroral latitudes. Our photochemical models will be useful for planning observational sequences and for analyzing data from the upcoming Cassini mission.</div>
</front>
</TEI>
<double idat="0019-1035:2000:Moses J:photochemistry:of:saturn">
<ISTEX>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<author>
<name sortKey="Moses, Julianne I" sort="Moses, Julianne I" uniqKey="Moses J" first="Julianne I." last="Moses">Julianne I. Moses</name>
</author>
<author>
<name sortKey="Bezard, Bruno" sort="Bezard, Bruno" uniqKey="Bezard B" first="Bruno" last="Bézard">Bruno Bézard</name>
</author>
<author>
<name sortKey="Lellouch, Emmanuel" sort="Lellouch, Emmanuel" uniqKey="Lellouch E" first="Emmanuel" last="Lellouch">Emmanuel Lellouch</name>
</author>
<author>
<name sortKey="Gladstone, G Randall" sort="Gladstone, G Randall" uniqKey="Gladstone G" first="G. Randall" last="Gladstone">G. Randall Gladstone</name>
</author>
<author>
<name sortKey="Feuchtgruber, Helmut" sort="Feuchtgruber, Helmut" uniqKey="Feuchtgruber H" first="Helmut" last="Feuchtgruber">Helmut Feuchtgruber</name>
</author>
<author>
<name sortKey="Allen, Mark" sort="Allen, Mark" uniqKey="Allen M" first="Mark" last="Allen">Mark Allen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:79FC56D1DA0A9235A3D8895F07188E2A3528818B</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1006/icar.1999.6270</idno>
<idno type="url">https://api.istex.fr/document/79FC56D1DA0A9235A3D8895F07188E2A3528818B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F59</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F59</idno>
<idno type="wicri:Area/Istex/Curation">001F57</idno>
<idno type="wicri:Area/Istex/Checkpoint">001091</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001091</idno>
<idno type="wicri:doubleKey">0019-1035:2000:Moses J:photochemistry:of:saturn</idno>
<idno type="wicri:Area/Main/Merge">004049</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<author>
<name sortKey="Moses, Julianne I" sort="Moses, Julianne I" uniqKey="Moses J" first="Julianne I." last="Moses">Julianne I. Moses</name>
<affiliation>
<wicri:noCountry code="subField">moses@lpi3.jsc.nasa.govf1</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bezard, Bruno" sort="Bezard, Bruno" uniqKey="Bezard B" first="Bruno" last="Bézard">Bruno Bézard</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>DESPA, Observatoire de Paris, Meudon, 92195</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lellouch, Emmanuel" sort="Lellouch, Emmanuel" uniqKey="Lellouch E" first="Emmanuel" last="Lellouch">Emmanuel Lellouch</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>DESPA, Observatoire de Paris, Meudon, 92195</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gladstone, G Randall" sort="Gladstone, G Randall" uniqKey="Gladstone G" first="G. Randall" last="Gladstone">G. Randall Gladstone</name>
<affiliation>
<wicri:noCountry code="subField">78228-0510</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Feuchtgruber, Helmut" sort="Feuchtgruber, Helmut" uniqKey="Feuchtgruber H" first="Helmut" last="Feuchtgruber">Helmut Feuchtgruber</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institut für Extraterrestrische Physik, Garching, 85740</wicri:regionArea>
<wicri:noRegion>85740</wicri:noRegion>
<wicri:noRegion>85740</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Allen, Mark" sort="Allen, Mark" uniqKey="Allen M" first="Mark" last="Allen">Mark Allen</name>
<affiliation>
<wicri:noCountry code="subField">91109</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Icarus</title>
<title level="j" type="abbrev">YICAR</title>
<idno type="ISSN">0019-1035</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">143</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="244">244</biblScope>
<biblScope unit="page" to="298">298</biblScope>
</imprint>
<idno type="ISSN">0019-1035</idno>
</series>
<idno type="istex">79FC56D1DA0A9235A3D8895F07188E2A3528818B</idno>
<idno type="DOI">10.1006/icar.1999.6270</idno>
<idno type="PII">S0019-1035(99)96270-X</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0019-1035</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Saturn</term>
<term>atmosphere</term>
<term>atmospheres</term>
<term>composition</term>
<term>infrared observations</term>
<term>organic chemistry</term>
<term>photochemistry</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To investigate the details of hydrocarbon photochemistry on Saturn, we have developed a one-dimensional diurnally averaged model that couples hydrocarbon and oxygen photochemistry, molecular and eddy diffusion, radiative transfer, and condensation. The model results are compared with observations from the Infrared Space Observatory (ISO) to place tighter constraints on molecular abundances, to better define Saturn's eddy diffusion coefficient profile, and to identify important chemical schemes that control the abundances of the observable hydrocarbons in Saturn's upper atmosphere. From the ISO observations, we determine that the column densities of CH3, CH3C2H, and C4H2 above 10 mbar are 4+2−1.5×1013 cm−2, (1.1±0.3)×1015 cm−2, and (1.2±0.3)×1014 cm−2, respectively. The observed ISO emission features also indicate C2H2 mixing ratios of 1.2+0.9−0.6×10−6 at 0.3 mbar and (2.7±0.8)×10−7 at 1.4 mbar, and a C2H6 mixing ratio of (9±2.5)×10−6 at 0.5 mbar. Upper limits are provided for C2H4, CH2CCH2, C3H8, and C6H2. The sensitivity of the model results to variations in the eddy diffusion coefficient profile, the solar flux, the CH4 photolysis branching ratios, the atomic hydrogen influx, and key reaction rates are discussed in detail. We find that C4H2 and CH3C2H are particularly good tracers of important chemical processes and physical conditions in Saturn's upper atmosphere, and C2H6 is a good tracer of the eddy diffusion coefficient in Saturn's lower stratosphere. The eddy diffusion coefficient must be smaller than ∼3×104 cm2 s−1 at pressures greater than 1 mbar in order to reproduce the C2H6 abundance inferred from ISO observations. The eddy diffusion coefficients in the upper stratosphere could be constrained by observations of CH3 radicals if the low-temperature chemistry of CH3 were better understood. We also discuss the implications of our modeling for aerosol formation in Saturn's lower stratosphere—diacetylene, butane, and water condense between ∼1 and 300 mbar in our model and will dominate stratospheric haze formation at nonauroral latitudes. Our photochemical models will be useful for planning observational sequences and for analyzing data from the upcoming Cassini mission.</div>
</front>
</TEI>
</ISTEX>
<ISTEX>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<author>
<name sortKey="Moses, Julianne I" sort="Moses, Julianne I" uniqKey="Moses J" first="Julianne I." last="Moses">Julianne I. Moses</name>
</author>
<author>
<name sortKey="Lellouch, Emmanuel" sort="Lellouch, Emmanuel" uniqKey="Lellouch E" first="Emmanuel" last="Lellouch">Emmanuel Lellouch</name>
</author>
<author>
<name sortKey="Bezard, Bruno" sort="Bezard, Bruno" uniqKey="Bezard B" first="Bruno" last="Bézard">Bruno Bézard</name>
</author>
<author>
<name sortKey="Gladstone, G Randall" sort="Gladstone, G Randall" uniqKey="Gladstone G" first="G. Randall" last="Gladstone">G. Randall Gladstone</name>
</author>
<author>
<name sortKey="Feuchtgruber, Helmut" sort="Feuchtgruber, Helmut" uniqKey="Feuchtgruber H" first="Helmut" last="Feuchtgruber">Helmut Feuchtgruber</name>
</author>
<author>
<name sortKey="Allen, Mark" sort="Allen, Mark" uniqKey="Allen M" first="Mark" last="Allen">Mark Allen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DA0AF197299235245290697937CD2FE3A7361212</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1006/icar.1999.6320</idno>
<idno type="url">https://api.istex.fr/document/DA0AF197299235245290697937CD2FE3A7361212/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F58</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F58</idno>
<idno type="wicri:Area/Istex/Curation">001F56</idno>
<idno type="wicri:Area/Istex/Checkpoint">001090</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001090</idno>
<idno type="wicri:doubleKey">0019-1035:2000:Moses J:photochemistry:of:saturn</idno>
<idno type="wicri:Area/Main/Merge">004048</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<author>
<name sortKey="Moses, Julianne I" sort="Moses, Julianne I" uniqKey="Moses J" first="Julianne I." last="Moses">Julianne I. Moses</name>
<affiliation>
<wicri:noCountry code="subField">moses@lpi.usra.eduf1</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lellouch, Emmanuel" sort="Lellouch, Emmanuel" uniqKey="Lellouch E" first="Emmanuel" last="Lellouch">Emmanuel Lellouch</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>DESPA, Observatoire de Paris, Meudon, 92195</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bezard, Bruno" sort="Bezard, Bruno" uniqKey="Bezard B" first="Bruno" last="Bézard">Bruno Bézard</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>DESPA, Observatoire de Paris, Meudon, 92195</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gladstone, G Randall" sort="Gladstone, G Randall" uniqKey="Gladstone G" first="G. Randall" last="Gladstone">G. Randall Gladstone</name>
<affiliation>
<wicri:noCountry code="subField">78228-0510</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Feuchtgruber, Helmut" sort="Feuchtgruber, Helmut" uniqKey="Feuchtgruber H" first="Helmut" last="Feuchtgruber">Helmut Feuchtgruber</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck Institut für Extraterrestrische Physik, Garching, 85740</wicri:regionArea>
<wicri:noRegion>85740</wicri:noRegion>
<wicri:noRegion>85740</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Allen, Mark" sort="Allen, Mark" uniqKey="Allen M" first="Mark" last="Allen">Mark Allen</name>
<affiliation>
<wicri:noCountry code="subField">91109</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Icarus</title>
<title level="j" type="abbrev">YICAR</title>
<idno type="ISSN">0019-1035</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">145</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="166">166</biblScope>
<biblScope unit="page" to="202">202</biblScope>
</imprint>
<idno type="ISSN">0019-1035</idno>
</series>
<idno type="istex">DA0AF197299235245290697937CD2FE3A7361212</idno>
<idno type="DOI">10.1006/icar.1999.6320</idno>
<idno type="PII">S0019-1035(99)96320-0</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0019-1035</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Saturn</term>
<term>atmosphere</term>
<term>infrared observations</term>
<term>interplanetary dust</term>
<term>meteoroids</term>
<term>photochemistry</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3±1)×1014 and (1.4±0.4)×1015 cm−2, respectively; our models indicate that a globally averaged oxygen influx of (4±2)×106 O atoms cm−2 s−1 is required to explain these observations. Models with a locally enhanced influx of H2O operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3±2)×10−16 g cm−2 s−1 of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon–oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen–oxygen bonded material is converted to carbon–oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-μm CO observations of Noll and Larson (Icarus 89, 168–189, 1990) and determine that the CO lines are most sensitive to the 100- to 400-mbar column density for which we derive a range of (0.7–1.5)×1017 cm−2; the CO observations do not allow us to distinguish between an external or internal source of CO on Saturn. If we assume that all the extraplanetary oxygen derives from a micrometeoroid source, then the unfocused dust flux at 9.5 AU must be (i) (1±0.7)×10−16 g cm−2 s−1 if interstellar grains are the source of the external oxygen on Saturn, (ii) (4±3)×10−17 g cm−2 s−1 if IDPs on randomly inclined, highly eccentric orbits (e.g., Halley-type comet grains) are the source of the external oxygen, or (iii) (2±1.4)×10−18 g cm−2 s−1 if IDPs on low inclination, low eccentricity orbits (e.g., Kuiper-belt grains) are the source of the external oxygen. These estimates can be used in combination with future Cassini dust detection data to determine the ultimate source of the dust at Saturn's distance from the Sun.</div>
</front>
</TEI>
</ISTEX>
</double>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003998 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 003998 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:79FC56D1DA0A9235A3D8895F07188E2A3528818B
   |texte=   Photochemistry of Saturn's Atmosphere
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024