La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photochemistry of Saturn's Atmosphere

Identifieur interne : 001F58 ( Istex/Corpus ); précédent : 001F57; suivant : 001F59

Photochemistry of Saturn's Atmosphere

Auteurs : Julianne I. Moses ; Emmanuel Lellouch ; Bruno Bézard ; G. Randall Gladstone ; Helmut Feuchtgruber ; Mark Allen

Source :

RBID : ISTEX:DA0AF197299235245290697937CD2FE3A7361212

English descriptors

Abstract

We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3±1)×1014 and (1.4±0.4)×1015 cm−2, respectively; our models indicate that a globally averaged oxygen influx of (4±2)×106 O atoms cm−2 s−1 is required to explain these observations. Models with a locally enhanced influx of H2O operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3±2)×10−16 g cm−2 s−1 of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon–oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen–oxygen bonded material is converted to carbon–oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-μm CO observations of Noll and Larson (Icarus 89, 168–189, 1990) and determine that the CO lines are most sensitive to the 100- to 400-mbar column density for which we derive a range of (0.7–1.5)×1017 cm−2; the CO observations do not allow us to distinguish between an external or internal source of CO on Saturn. If we assume that all the extraplanetary oxygen derives from a micrometeoroid source, then the unfocused dust flux at 9.5 AU must be (i) (1±0.7)×10−16 g cm−2 s−1 if interstellar grains are the source of the external oxygen on Saturn, (ii) (4±3)×10−17 g cm−2 s−1 if IDPs on randomly inclined, highly eccentric orbits (e.g., Halley-type comet grains) are the source of the external oxygen, or (iii) (2±1.4)×10−18 g cm−2 s−1 if IDPs on low inclination, low eccentricity orbits (e.g., Kuiper-belt grains) are the source of the external oxygen. These estimates can be used in combination with future Cassini dust detection data to determine the ultimate source of the dust at Saturn's distance from the Sun.

Url:
DOI: 10.1006/icar.1999.6320

Links to Exploration step

ISTEX:DA0AF197299235245290697937CD2FE3A7361212

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<author>
<name sortKey="Moses, Julianne I" sort="Moses, Julianne I" uniqKey="Moses J" first="Julianne I." last="Moses">Julianne I. Moses</name>
<affiliation>
<mods:affiliation>Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058-1113, f1 moses@lpi.usra.eduf1</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lellouch, Emmanuel" sort="Lellouch, Emmanuel" uniqKey="Lellouch E" first="Emmanuel" last="Lellouch">Emmanuel Lellouch</name>
<affiliation>
<mods:affiliation>DESPA, Observatoire de Paris, Meudon, 92195, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bezard, Bruno" sort="Bezard, Bruno" uniqKey="Bezard B" first="Bruno" last="Bézard">Bruno Bézard</name>
<affiliation>
<mods:affiliation>DESPA, Observatoire de Paris, Meudon, 92195, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gladstone, G Randall" sort="Gladstone, G Randall" uniqKey="Gladstone G" first="G. Randall" last="Gladstone">G. Randall Gladstone</name>
<affiliation>
<mods:affiliation>Space Sciences Department, Southwest Research Institute, San Antonio, Texas, 78228-0510</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feuchtgruber, Helmut" sort="Feuchtgruber, Helmut" uniqKey="Feuchtgruber H" first="Helmut" last="Feuchtgruber">Helmut Feuchtgruber</name>
<affiliation>
<mods:affiliation>Max-Planck Institut für Extraterrestrische Physik, Garching, 85740, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Allen, Mark" sort="Allen, Mark" uniqKey="Allen M" first="Mark" last="Allen">Mark Allen</name>
<affiliation>
<mods:affiliation>Earth and Space Science Division, Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, Pasadena, California, 91109</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DA0AF197299235245290697937CD2FE3A7361212</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1006/icar.1999.6320</idno>
<idno type="url">https://api.istex.fr/document/DA0AF197299235245290697937CD2FE3A7361212/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F58</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<author>
<name sortKey="Moses, Julianne I" sort="Moses, Julianne I" uniqKey="Moses J" first="Julianne I." last="Moses">Julianne I. Moses</name>
<affiliation>
<mods:affiliation>Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058-1113, f1 moses@lpi.usra.eduf1</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lellouch, Emmanuel" sort="Lellouch, Emmanuel" uniqKey="Lellouch E" first="Emmanuel" last="Lellouch">Emmanuel Lellouch</name>
<affiliation>
<mods:affiliation>DESPA, Observatoire de Paris, Meudon, 92195, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bezard, Bruno" sort="Bezard, Bruno" uniqKey="Bezard B" first="Bruno" last="Bézard">Bruno Bézard</name>
<affiliation>
<mods:affiliation>DESPA, Observatoire de Paris, Meudon, 92195, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gladstone, G Randall" sort="Gladstone, G Randall" uniqKey="Gladstone G" first="G. Randall" last="Gladstone">G. Randall Gladstone</name>
<affiliation>
<mods:affiliation>Space Sciences Department, Southwest Research Institute, San Antonio, Texas, 78228-0510</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feuchtgruber, Helmut" sort="Feuchtgruber, Helmut" uniqKey="Feuchtgruber H" first="Helmut" last="Feuchtgruber">Helmut Feuchtgruber</name>
<affiliation>
<mods:affiliation>Max-Planck Institut für Extraterrestrische Physik, Garching, 85740, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Allen, Mark" sort="Allen, Mark" uniqKey="Allen M" first="Mark" last="Allen">Mark Allen</name>
<affiliation>
<mods:affiliation>Earth and Space Science Division, Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, Pasadena, California, 91109</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Icarus</title>
<title level="j" type="abbrev">YICAR</title>
<idno type="ISSN">0019-1035</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">145</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="166">166</biblScope>
<biblScope unit="page" to="202">202</biblScope>
</imprint>
<idno type="ISSN">0019-1035</idno>
</series>
<idno type="istex">DA0AF197299235245290697937CD2FE3A7361212</idno>
<idno type="DOI">10.1006/icar.1999.6320</idno>
<idno type="PII">S0019-1035(99)96320-0</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0019-1035</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Saturn</term>
<term>atmosphere</term>
<term>infrared observations</term>
<term>interplanetary dust</term>
<term>meteoroids</term>
<term>photochemistry</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3±1)×1014 and (1.4±0.4)×1015 cm−2, respectively; our models indicate that a globally averaged oxygen influx of (4±2)×106 O atoms cm−2 s−1 is required to explain these observations. Models with a locally enhanced influx of H2O operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3±2)×10−16 g cm−2 s−1 of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon–oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen–oxygen bonded material is converted to carbon–oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-μm CO observations of Noll and Larson (Icarus 89, 168–189, 1990) and determine that the CO lines are most sensitive to the 100- to 400-mbar column density for which we derive a range of (0.7–1.5)×1017 cm−2; the CO observations do not allow us to distinguish between an external or internal source of CO on Saturn. If we assume that all the extraplanetary oxygen derives from a micrometeoroid source, then the unfocused dust flux at 9.5 AU must be (i) (1±0.7)×10−16 g cm−2 s−1 if interstellar grains are the source of the external oxygen on Saturn, (ii) (4±3)×10−17 g cm−2 s−1 if IDPs on randomly inclined, highly eccentric orbits (e.g., Halley-type comet grains) are the source of the external oxygen, or (iii) (2±1.4)×10−18 g cm−2 s−1 if IDPs on low inclination, low eccentricity orbits (e.g., Kuiper-belt grains) are the source of the external oxygen. These estimates can be used in combination with future Cassini dust detection data to determine the ultimate source of the dust at Saturn's distance from the Sun.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Julianne I. Moses</name>
<affiliations>
<json:string>Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058-1113, f1 moses@lpi.usra.eduf1</json:string>
</affiliations>
</json:item>
<json:item>
<name>Emmanuel Lellouch</name>
<affiliations>
<json:string>DESPA, Observatoire de Paris, Meudon, 92195, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Bruno Bézard</name>
<affiliations>
<json:string>DESPA, Observatoire de Paris, Meudon, 92195, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>G.Randall Gladstone</name>
<affiliations>
<json:string>Space Sciences Department, Southwest Research Institute, San Antonio, Texas, 78228-0510</json:string>
</affiliations>
</json:item>
<json:item>
<name>Helmut Feuchtgruber</name>
<affiliations>
<json:string>Max-Planck Institut für Extraterrestrische Physik, Garching, 85740, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mark Allen</name>
<affiliations>
<json:string>Earth and Space Science Division, Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, Pasadena, California, 91109</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Saturn</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>atmosphere</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>photochemistry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>interplanetary dust</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>infrared observations</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>meteoroids</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3±1)×1014 and (1.4±0.4)×1015 cm−2, respectively; our models indicate that a globally averaged oxygen influx of (4±2)×106 O atoms cm−2 s−1 is required to explain these observations. Models with a locally enhanced influx of H2O operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3±2)×10−16 g cm−2 s−1 of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon–oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen–oxygen bonded material is converted to carbon–oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-μm CO observations of Noll and Larson (Icarus 89, 168–189, 1990) and determine that the CO lines are most sensitive to the 100- to 400-mbar column density for which we derive a range of (0.7–1.5)×1017 cm−2; the CO observations do not allow us to distinguish between an external or internal source of CO on Saturn. If we assume that all the extraplanetary oxygen derives from a micrometeoroid source, then the unfocused dust flux at 9.5 AU must be (i) (1±0.7)×10−16 g cm−2 s−1 if interstellar grains are the source of the external oxygen on Saturn, (ii) (4±3)×10−17 g cm−2 s−1 if IDPs on randomly inclined, highly eccentric orbits (e.g., Halley-type comet grains) are the source of the external oxygen, or (iii) (2±1.4)×10−18 g cm−2 s−1 if IDPs on low inclination, low eccentricity orbits (e.g., Kuiper-belt grains) are the source of the external oxygen. These estimates can be used in combination with future Cassini dust detection data to determine the ultimate source of the dust at Saturn's distance from the Sun.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>552 x 755 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>2888</abstractCharCount>
<pdfWordCount>27057</pdfWordCount>
<pdfCharCount>142299</pdfCharCount>
<pdfPageCount>37</pdfPageCount>
<abstractWordCount>452</abstractWordCount>
</qualityIndicators>
<title>Photochemistry of Saturn's Atmosphere</title>
<pii>
<json:string>S0019-1035(99)96320-0</json:string>
</pii>
<refBibs>
<json:item>
<author>
<json:item>
<name>J.R. Acarreta</name>
</json:item>
<json:item>
<name>A. Sánchez-Lavega</name>
</json:item>
</author>
<host>
<volume>137</volume>
<pages>
<last>33</last>
<first>24</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Vertical cloud structure in Saturn's 1990 equatorial storm</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Adachi</name>
</json:item>
<json:item>
<name>N. Basco</name>
</json:item>
<json:item>
<name>D.G.L. James</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>1276</last>
<first>1251</first>
</pages>
<author></author>
<title>Int. J. Chem. Kinet.</title>
</host>
<title>The acetyl radicals CH3CO· and CD3CO· studied by flash photolysis and kinetic spectroscopy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Allen</name>
</json:item>
<json:item>
<name>J.E. Frederick</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>2075</last>
<first>2066</first>
</pages>
<author></author>
<title>J. Atoms. Sci.</title>
</host>
<title>Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann–Runge bands</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Allen</name>
</json:item>
<json:item>
<name>Y.L. Yung</name>
</json:item>
<json:item>
<name>J.W. Waters</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>3627</last>
<first>3617</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere (50–120 km)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Anastasi</name>
</json:item>
<json:item>
<name>P.R. Maw</name>
</json:item>
</author>
<host>
<volume>78</volume>
<pages>
<last>2433</last>
<first>2423</first>
</pages>
<author></author>
<title>J. Chem. Soc. Farad. Trans. 1</title>
</host>
<title>Reaction kinetics in acetyl chemistry over a wide range of temperature and pressure</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Arai</name>
</json:item>
<json:item>
<name>S. Nagai</name>
</json:item>
<json:item>
<name>M. Hatada</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>216</last>
<first>211</first>
</pages>
<author></author>
<title>Radiat. Phys. Chem.</title>
</host>
<title>Radiolysis of methane containing small amount of carbon monoxide–-Formation of organic acids</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Atkinson</name>
</json:item>
<json:item>
<name>D.L. Baulch</name>
</json:item>
<json:item>
<name>R.A. Cox</name>
</json:item>
<json:item>
<name>R.F. Hampson, Jr.</name>
</json:item>
<json:item>
<name>J.A. Kerr</name>
</json:item>
<json:item>
<name>J. Troe</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>1568</last>
<first>1125</first>
</pages>
<author></author>
<title>J. Phys. Chem. Ref. Data</title>
</host>
<title>Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Atmospheres and Ionospheres of the Outer Planets and Their Satellites.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Baguhl</name>
</json:item>
<json:item>
<name>E. Grün</name>
</json:item>
<json:item>
<name>D.P. Hamilton</name>
</json:item>
<json:item>
<name>G. Linkert</name>
</json:item>
<json:item>
<name>R. Riemann</name>
</json:item>
<json:item>
<name>P. Staubach</name>
</json:item>
<json:item>
<name>H.A. Zook</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<last>476</last>
<first>471</first>
</pages>
<author></author>
<title>Space Sci. Rev.</title>
</host>
<title>The flux of interstellar dust observed by Ulysses and Galileo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Baguhl</name>
</json:item>
<json:item>
<name>E. Grün</name>
</json:item>
<json:item>
<name>M. Landgraf</name>
</json:item>
</author>
<host>
<volume>78</volume>
<pages>
<last>172</last>
<first>165</first>
</pages>
<author></author>
<title>Space Sci. Rev.</title>
</host>
<title>In situ measurements of interstellar dust with the Ulysses and Galileo spaceprobes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Banaszkiewicz</name>
</json:item>
<json:item>
<name>A.V. Krivov</name>
</json:item>
</author>
<host>
<volume>129</volume>
<pages>
<last>303</last>
<first>289</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Hyperion as a dust source in the saturnian system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.A. Banyard</name>
</json:item>
<json:item>
<name>C.E. Canosa-Mas</name>
</json:item>
<json:item>
<name>M.D. Ellis</name>
</json:item>
<json:item>
<name>H.M. Frey</name>
</json:item>
<json:item>
<name>R. Walsh</name>
</json:item>
</author>
<host>
<pages>
<last>1157</last>
<first>1156</first>
</pages>
<author></author>
<title>J. Chem. Soc. Chem. Commun.</title>
</host>
<title>Ketene photochemistry. Some observations on the reactions and reactivity of triplet methylene</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Bartels</name>
</json:item>
<json:item>
<name>J. Edelbüttel-Einhaus</name>
</json:item>
<json:item>
<name>K. Hoyermann</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>138</last>
<first>131</first>
</pages>
<author></author>
<title>Symp. Int. Combust. Proc</title>
</host>
<title>The detection of CH3CO, C2H5, and CH3CHO by REMPI/mass spectrometry and the application to the study of the reactions H+CH3CO and O+CH3CO</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Bartels</name>
</json:item>
<json:item>
<name>K. Hoyermann</name>
</json:item>
<json:item>
<name>R. Sievert</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>72</last>
<first>61</first>
</pages>
<author></author>
<title>Symp. Int. Combust. Proc.</title>
</host>
<title>Elementary reactions in the oxidation of ethylene: The reaction of OH radicals with ethylene and the reaction of C2H4OH radicals with H atoms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.F. Bass</name>
</json:item>
<json:item>
<name>J.I. Moses</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<first>1099</first>
</pages>
<author></author>
<title>Bull. Am. Astron. Soc</title>
</host>
<title>The chemistry and structure of Saturn's ionosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.L. Baulch</name>
</json:item>
<json:item>
<name>C.J. Cobos</name>
</json:item>
<json:item>
<name>R.A. Cox</name>
</json:item>
<json:item>
<name>C. Esser</name>
</json:item>
<json:item>
<name>P. Frank</name>
</json:item>
<json:item>
<name>T. Just</name>
</json:item>
<json:item>
<name>J.A. Kerr</name>
</json:item>
<json:item>
<name>M.J. Pilling</name>
</json:item>
<json:item>
<name>J. Troe</name>
</json:item>
<json:item>
<name>R.W. Walker</name>
</json:item>
<json:item>
<name>J. Warnatz</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>734</last>
<first>411</first>
</pages>
<author></author>
<title>J. Phys. Chem. Ref. Data</title>
</host>
<title>Evaluated kinetic data for combustion modeling</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Bézard</name>
</json:item>
<json:item>
<name>P. Drossart</name>
</json:item>
<json:item>
<name>E. Lellouch</name>
</json:item>
<json:item>
<name>G. Tarrago</name>
</json:item>
<json:item>
<name>J.P. Maillard</name>
</json:item>
</author>
<host>
<volume>346</volume>
<pages>
<last>513</last>
<first>509</first>
</pages>
<author></author>
<title>Astrophys. J.</title>
</host>
<title>Detection of arsine in Saturn</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Bézard</name>
</json:item>
<json:item>
<name>H. Feuchtgruber</name>
</json:item>
<json:item>
<name>J.I. Moses</name>
</json:item>
<json:item>
<name>T. Encrenaz</name>
</json:item>
</author>
<host>
<volume>334</volume>
<pages>
<last>44</last>
<first>41</first>
</pages>
<author></author>
<title>Astron. Astrophys.</title>
</host>
<title>Detection of methyl radicals (CH3) on Saturn</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Black</name>
</json:item>
<json:item>
<name>R.L. Sharpless</name>
</json:item>
<json:item>
<name>T.G. Slanger</name>
</json:item>
<json:item>
<name>M.R. Taherian</name>
</json:item>
</author>
<host>
<volume>113</volume>
<pages>
<last>313</last>
<first>311</first>
</pages>
<author></author>
<title>Chem. Phys. Lett.</title>
</host>
<title>The 1150–1300 Å absorption spectrum of O2 at 930 K</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Böhland</name>
</json:item>
<json:item>
<name>S. Dóbé</name>
</json:item>
<json:item>
<name>F. Temps</name>
</json:item>
<json:item>
<name>H.G. Wagner</name>
</json:item>
</author>
<host>
<volume>89</volume>
<pages>
<last>1116</last>
<first>1110</first>
</pages>
<author></author>
<title>Ber. Bunsenges. Phys. Chem.</title>
</host>
<title>Kinetics of reaction between CH2 (X 3B1)-radicals and saturated hydrocarbons in the temperature range 296 K≤T≤707 K</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.B. Callear</name>
</json:item>
<json:item>
<name>I.A. Cooper</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>1775</last>
<first>1763</first>
</pages>
<author></author>
<title>J. Chem. Soc. Farad. Trans</title>
</host>
<title>Formation of CH3 CHO in the combination of CH3 with CHO</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.E. Canosa-Mas</name>
</json:item>
<json:item>
<name>H.M. Frey</name>
</json:item>
<json:item>
<name>R. Walsh</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<last>578</last>
<first>561</first>
</pages>
<author></author>
<title>J. Chem. Soc. Farad. Trans. 2</title>
</host>
<title>Studies of methylene chemistry by pulsed laser-induced decomposition of ketene. 1. Ketene in the presence of noble gases</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.H. Carver</name>
</json:item>
<json:item>
<name>H.P. Gies</name>
</json:item>
<json:item>
<name>T.I. Hobbs</name>
</json:item>
<json:item>
<name>B.R. Lewis</name>
</json:item>
<json:item>
<name>D.G. McCoy</name>
</json:item>
</author>
<host>
<volume>82</volume>
<pages>
<last>1960</last>
<first>1955</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
<title>Temperature dependence of the molecular oxygen photoabsorption cross section near the H Lyman α line</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.J. Cobos</name>
</json:item>
<json:item>
<name>J. Troe</name>
</json:item>
</author>
<host>
<volume>113</volume>
<pages>
<last>424</last>
<first>419</first>
</pages>
<author></author>
<title>Chem. Phys. Lett.</title>
</host>
<title>The influence of potential energy parameters on the reaction H+CH3⇌CH4</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. Cohen</name>
</json:item>
<json:item>
<name>K.R. Westerberg</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>1311</last>
<first>1211</first>
</pages>
<author></author>
<title>J. Phys. Chem. Ref. Data</title>
</host>
<title>Chemical kinetic data sheets for high-temperature reactions. Part II</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.E.P. Connerney</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>776</last>
<first>773</first>
</pages>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Magnetic connection for Saturn's rings and atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.E.P. Connerney</name>
</json:item>
<json:item>
<name>J.H. Waite</name>
</json:item>
</author>
<host>
<volume>312</volume>
<pages>
<last>138</last>
<first>136</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>New model of Saturn's ionosphere with an influx of water from the rings</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.J. Conrath</name>
</json:item>
<json:item>
<name>J.A. Pirraglia</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>293</last>
<first>286</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Thermal structure of Saturn from Voyager infrared measurements: Implications for atmospheric dynamics</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Courtin</name>
</json:item>
<json:item>
<name>D. Gautier</name>
</json:item>
<json:item>
<name>A. Marten</name>
</json:item>
<json:item>
<name>B. Bézard</name>
</json:item>
<json:item>
<name>R. Hanel</name>
</json:item>
</author>
<host>
<volume>287</volume>
<pages>
<last>916</last>
<first>899</first>
</pages>
<author></author>
<title>Astrophys. J</title>
</host>
<title>The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra: NH3, PH3, C2H2, C2H6, CH3D, CH4, and the saturnian D/H isotopic ratio</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Coustenis</name>
</json:item>
<json:item>
<name>A. Salama</name>
</json:item>
<json:item>
<name>E. Lellouch</name>
</json:item>
<json:item>
<name>T. Encrenaz</name>
</json:item>
<json:item>
<name>G.L. Bjoraker</name>
</json:item>
<json:item>
<name>R.E. Samuelson</name>
</json:item>
<json:item>
<name>T. de Graauw</name>
</json:item>
<json:item>
<name>H. Feuchtgruber</name>
</json:item>
<json:item>
<name>M.F. Kessler</name>
</json:item>
</author>
<host>
<volume>336</volume>
<pages>
<last>89</last>
<first>85</first>
</pages>
<author></author>
<title>Astron. Astrophys</title>
</host>
<title>Evidence for water vapor in Titan's atmosphere from ISO/SWS data</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J.N. Cuzzi</name>
</json:item>
<json:item>
<name>R.H. Durisen</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<last>501</last>
<first>467</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Bombardment of planetary rings by meteoroids: General formulation and effects of Oort-cloud projectiles</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.N. Cuzzi</name>
</json:item>
<json:item>
<name>P.R. Estrada</name>
</json:item>
</author>
<host>
<volume>132</volume>
<pages>
<last>35</last>
<first>1</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Compositional evolution of Saturn's rings due to meteoroid bombardment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. de Graauw</name>
</json:item>
</author>
<host>
<volume>315</volume>
<pages>
<last>52</last>
<first>49</first>
</pages>
<author></author>
<title>Astron. Astrophys</title>
</host>
<title>Observing with the ISO short-wavelength spectrometer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. de Graauw</name>
</json:item>
<json:item>
<name>H. Feuchtgruber</name>
</json:item>
<json:item>
<name>B. Bézard</name>
</json:item>
<json:item>
<name>P. Drossart</name>
</json:item>
<json:item>
<name>T. Encrenaz</name>
</json:item>
<json:item>
<name>D.A. Beintema</name>
</json:item>
<json:item>
<name>M. Griffin</name>
</json:item>
<json:item>
<name>A. Heras</name>
</json:item>
<json:item>
<name>M. Kessler</name>
</json:item>
<json:item>
<name>K. Leech</name>
</json:item>
<json:item>
<name>E. Lellouch</name>
</json:item>
<json:item>
<name>P. Morris</name>
</json:item>
<json:item>
<name>P.R. Roelfsema</name>
</json:item>
<json:item>
<name>M. Roos-Serote</name>
</json:item>
<json:item>
<name>A. Salama</name>
</json:item>
<json:item>
<name>B. Vandenbussche</name>
</json:item>
<json:item>
<name>E.A. Valentijn</name>
</json:item>
<json:item>
<name>G.R. Davis</name>
</json:item>
<json:item>
<name>D.A. Naylor</name>
</json:item>
</author>
<host>
<volume>321</volume>
<pages>
<last>16</last>
<first>13</first>
</pages>
<author></author>
<title>Astron. Astrophys</title>
</host>
<title>First results of ISO-SWS observations of Saturn: Detection of CO2, CH3C2H, C4H2 and tropospheric H2O</title>
</json:item>
<json:item>
<host>
<pages>
<last>85</last>
<first>37</first>
</pages>
<author></author>
<title>Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling</title>
</host>
</json:item>
<json:item>
<host>
<pages>
<last>91</last>
<first>90</first>
</pages>
<author></author>
<title>Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling</title>
</host>
</json:item>
<json:item>
<host>
<pages>
<last>87</last>
<first>41</first>
</pages>
<author></author>
<title>Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling</title>
</host>
</json:item>
<json:item>
<host>
<pages>
<last>92</last>
<first>20</first>
</pages>
<author></author>
<title>Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R.W. Ditchburn</name>
</json:item>
<json:item>
<name>P.A. Young</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>139</last>
<first>127</first>
</pages>
<author></author>
<title>J. Atmos. Terr. Phys</title>
</host>
<title>The absorption of molecular oxygen between 1850 and 2500 Å</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Dóbé</name>
</json:item>
<json:item>
<name>T. Bérces</name>
</json:item>
<json:item>
<name>I. Szilágyi</name>
</json:item>
</author>
<host>
<volume>87</volume>
<pages>
<last>2336</last>
<first>2331</first>
</pages>
<author></author>
<title>J. Chem. Soc. Farad. Trans</title>
</host>
<title>Kinetics of the reaction between methoxyl radicals and hydrogen atoms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Duncan</name>
</json:item>
<json:item>
<name>T. Quinn</name>
</json:item>
<json:item>
<name>S. Tremaine</name>
</json:item>
</author>
<host>
<volume>328</volume>
<pages>
<last>73</last>
<first>69</first>
</pages>
<author></author>
<title>Astrophys. J.</title>
</host>
<title>The origin of short-period comets</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R.H. Durisen</name>
</json:item>
<json:item>
<name>N.L. Cramer</name>
</json:item>
<json:item>
<name>B.W. Murphy</name>
</json:item>
<json:item>
<name>J.N. Cuzzi</name>
</json:item>
<json:item>
<name>T.L. Mullikin</name>
</json:item>
<json:item>
<name>S.E. Cederbloom</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<last>166</last>
<first>136</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Ballistic transport in planetary ring systems due to particle erosion mechanisms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Encrenaz</name>
</json:item>
</author>
<host>
<pages>
<last>16</last>
<first>15</first>
</pages>
<author></author>
<title>International Symposium: The Jovian System after Galileo, the Saturnian System before Cassini-Huygens</title>
</host>
<title>Jupiter and Saturn: Chemical composition in the stratosphere and the upper troposphere from ISO 6–180 μm observations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Fagerström</name>
</json:item>
<json:item>
<name>A. Lund</name>
</json:item>
<json:item>
<name>G. Mahmoud</name>
</json:item>
<json:item>
<name>J.T. Jodkowski</name>
</json:item>
<json:item>
<name>E. Ratajczak</name>
</json:item>
</author>
<host>
<volume>204</volume>
<pages>
<last>234</last>
<first>226</first>
</pages>
<author></author>
<title>Chem. Phys. Lett.</title>
</host>
<title>Kinetics of the cross reaction between methyl and hydroxyl radicals</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.L. Failes</name>
</json:item>
<json:item>
<name>D.L. Singleton</name>
</json:item>
<json:item>
<name>G. Paraskevopoulos</name>
</json:item>
<json:item>
<name>R.S. Irwin</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>379</last>
<first>371</first>
</pages>
<author></author>
<title>Int. J. Chem. Kinet</title>
</host>
<title>Rate constants for the reaction of ground-state oxygen atoms with methanol from 297 to 544 K</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.F. Fegley, Jr.</name>
</json:item>
<json:item>
<name>K. Lodders</name>
</json:item>
</author>
<host>
<volume>110</volume>
<pages>
<last>154</last>
<first>117</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Chemical models of the deep atmospheres of Jupiter and Saturn</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.C. Festou</name>
</json:item>
<json:item>
<name>S.K. Atreya</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>1150</last>
<first>1147</first>
</pages>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Voyager ultraviolet stellar occultation measurements of the composition and thermal profiles of the saturnian upper atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Feuchtgruber</name>
</json:item>
<json:item>
<name>E. Lellouch</name>
</json:item>
<json:item>
<name>T. de Graauw</name>
</json:item>
<json:item>
<name>B. Bézard</name>
</json:item>
<json:item>
<name>T. Encrenaz</name>
</json:item>
<json:item>
<name>M. Griffin</name>
</json:item>
</author>
<host>
<volume>389</volume>
<pages>
<last>162</last>
<first>159</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>External supply of oxygen to the atmospheres of the giant planets</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Fouchet</name>
</json:item>
<json:item>
<name>R. Prangé</name>
</json:item>
<json:item>
<name>J.E.C. Connerney</name>
</json:item>
<json:item>
<name>R. Courtin</name>
</json:item>
<json:item>
<name>L. Ben-Jaffel</name>
</json:item>
<json:item>
<name>K. Noll</name>
</json:item>
<json:item>
<name>J.C. McConnell</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<first>1129</first>
</pages>
<author></author>
<title>Bull. Am. Astron. Soc</title>
</host>
<title>HST spectro-imaging of Saturn and search for water from the rings</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.J. Frost</name>
</json:item>
<json:item>
<name>P. Sharkey</name>
</json:item>
<json:item>
<name>I.W.M. Smith</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>12259</last>
<first>12254</first>
</pages>
<author></author>
<title>J. Phys. Chem</title>
</host>
<title>Reaction between OH (OD) radicals and CO at temperatures down to 80 K: Experiment and theory</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.P. Gentieu</name>
</json:item>
<json:item>
<name>J.E. Mentall</name>
</json:item>
</author>
<host>
<volume>169</volume>
<pages>
<last>683</last>
<first>681</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Formaldehyde absorption coefficients in the vacuum ultraviolet (650–1850 Ångstroms)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.T. Gibson</name>
</json:item>
<json:item>
<name>H.P.F. Gies</name>
</json:item>
<json:item>
<name>A.J. Blake</name>
</json:item>
<json:item>
<name>D.G. McCoy</name>
</json:item>
<json:item>
<name>P.J. Rogers</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>393</last>
<first>385</first>
</pages>
<author></author>
<title>J. Quant. Spectrosc. Radiat. Trans</title>
</host>
<title>Temperature dependence in the Schumann-Runge photoabsorption continuum of oxygen</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.R. Gladstone</name>
</json:item>
<json:item>
<name>M. Allen</name>
</json:item>
<json:item>
<name>Y.L. Yung</name>
</json:item>
</author>
<host>
<volume>119</volume>
<pages>
<last>52</last>
<first>1</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Hydrocarbon photochemistry in the upper atmosphere of Jupiter</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Glicker</name>
</json:item>
<json:item>
<name>L.J. Stief</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>2857</last>
<first>2852</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Photolysis of formaldehyde at 1470 and 1236 Å</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.M. Greenberg</name>
</json:item>
</author>
<host>
<volume>330</volume>
<pages>
<last>380</last>
<first>375</first>
</pages>
<author></author>
<title>Astron. Astrophys</title>
</host>
<title>Making a comet nucleus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.-H. Grotheer</name>
</json:item>
<json:item>
<name>G. Riekert</name>
</json:item>
<json:item>
<name>D. Walter</name>
</json:item>
<json:item>
<name>T. Just</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>972</last>
<first>963</first>
</pages>
<author></author>
<title>Symp. Int. Combust. Proc</title>
</host>
<title>Reactions of hydroxymethyl and hydroxymethyl radicals with molecular and atomic oxygen</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Grün</name>
</json:item>
<json:item>
<name>B. Gustafson</name>
</json:item>
<json:item>
<name>I. Mann</name>
</json:item>
<json:item>
<name>M. Baguhl</name>
</json:item>
<json:item>
<name>G.E. Morfill</name>
</json:item>
<json:item>
<name>P. Staubach</name>
</json:item>
<json:item>
<name>A. Taylor</name>
</json:item>
<json:item>
<name>H.A. Zook</name>
</json:item>
</author>
<host>
<volume>286</volume>
<pages>
<last>924</last>
<first>915</first>
</pages>
<author></author>
<title>Astron. Astrophys</title>
</host>
<title>Interstellar dust in the heliosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Grün</name>
</json:item>
<json:item>
<name>P. Staubach</name>
</json:item>
<json:item>
<name>M. Baguhl</name>
</json:item>
<json:item>
<name>D.P. Hamilton</name>
</json:item>
<json:item>
<name>H.A. Zook</name>
</json:item>
<json:item>
<name>S. Dermott</name>
</json:item>
<json:item>
<name>B.A. Gustafson</name>
</json:item>
<json:item>
<name>H. Fechtig</name>
</json:item>
<json:item>
<name>J. Kissel</name>
</json:item>
<json:item>
<name>D. Linkert</name>
</json:item>
<json:item>
<name>G. Linkert</name>
</json:item>
<json:item>
<name>R. Sama</name>
</json:item>
<json:item>
<name>M.S. Hanner</name>
</json:item>
<json:item>
<name>C. Polanskey</name>
</json:item>
<json:item>
<name>M. Horanyi</name>
</json:item>
<json:item>
<name>B.A. Lindblad</name>
</json:item>
<json:item>
<name>I. Mann</name>
</json:item>
<json:item>
<name>J.A.M. McDonnell</name>
</json:item>
<json:item>
<name>G.E. Morfill</name>
</json:item>
<json:item>
<name>G. Schwehm</name>
</json:item>
</author>
<host>
<volume>129</volume>
<pages>
<last>288</last>
<first>270</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>South–north and radial traverses through the interplanetary dust cloud</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Grün</name>
</json:item>
<json:item>
<name>H.A. Zook</name>
</json:item>
<json:item>
<name>M. Baguhl</name>
</json:item>
<json:item>
<name>A. Balogh</name>
</json:item>
<json:item>
<name>S.J. Bame</name>
</json:item>
<json:item>
<name>H. Fechtig</name>
</json:item>
<json:item>
<name>R. Forsyth</name>
</json:item>
<json:item>
<name>M.S. Hanner</name>
</json:item>
<json:item>
<name>M. Horanyi</name>
</json:item>
<json:item>
<name>J. Kissel</name>
</json:item>
<json:item>
<name>B.-A. Lindblad</name>
</json:item>
<json:item>
<name>D. Linkert</name>
</json:item>
<json:item>
<name>I. Mann</name>
</json:item>
<json:item>
<name>J.A.M. McDonnell</name>
</json:item>
<json:item>
<name>G.E. Morfill</name>
</json:item>
<json:item>
<name>J.L. Phillips</name>
</json:item>
<json:item>
<name>C. Polanskey</name>
</json:item>
<json:item>
<name>G. Schwehm</name>
</json:item>
<json:item>
<name>N. Siddique</name>
</json:item>
<json:item>
<name>P. Staubach</name>
</json:item>
<json:item>
<name>J. Sveska</name>
</json:item>
<json:item>
<name>A. Taylor</name>
</json:item>
</author>
<host>
<volume>362</volume>
<pages>
<last>430</last>
<first>428</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Grün</name>
</json:item>
<json:item>
<name>H.A. Zook</name>
</json:item>
<json:item>
<name>H. Fechtig</name>
</json:item>
<json:item>
<name>R.H. Giese</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>272</last>
<first>244</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Collisional balance of the meteoritic complex</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.A. Gurnett</name>
</json:item>
<json:item>
<name>J.A. Ansher</name>
</json:item>
<json:item>
<name>W.S. Kurth</name>
</json:item>
<json:item>
<name>L.J. Granroth</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>3128</last>
<first>3125</first>
</pages>
<author></author>
<title>Geophys. Res. Lett</title>
</host>
<title>Micron-sized dust particles detected in the outer Solar System by Voyager 1 and 2 plasma wave instruments</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Physics, Chemistry, and Dynamics of Interplanetary Dust</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>G.N. Haddad</name>
</json:item>
<json:item>
<name>J.A.R. Samson</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<last>6626</last>
<first>6623</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Total absorption and photoionization cross sections of water between 100 and 100 Å</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Hagége</name>
</json:item>
<json:item>
<name>P.C. Roberge</name>
</json:item>
<json:item>
<name>C. Vermeil</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<last>141</last>
<first>138</first>
</pages>
<author></author>
<title>Ber. Bunsenges. Phys. Chem</title>
</host>
<title>Methanol photochemistry: Collision-induced phenomena</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Hassinen</name>
</json:item>
<json:item>
<name>K. Kalliorinne</name>
</json:item>
<json:item>
<name>J. Koskikallio</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>745</last>
<first>741</first>
</pages>
<author></author>
<title>Int. J. Chem. Kinet</title>
</host>
<title>Kinetics of reactions between methyl and acetyl radicals in gas phase produced by flash photolysis of acetic anhydride</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Hayashi</name>
</json:item>
<json:item>
<name>Y. Iida</name>
</json:item>
<json:item>
<name>Y. Morioka</name>
</json:item>
<json:item>
<name>M. Sasanuma</name>
</json:item>
<json:item>
<name>E. Ishiguro</name>
</json:item>
<json:item>
<name>M. Nakamura</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>2870</last>
<first>2861</first>
</pages>
<author></author>
<title>Atom. Molec. Phys</title>
</host>
<title>Photoionisation mass spectrometry of O2 in the VUV region</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.T. Herron</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>1026</last>
<first>967</first>
</pages>
<author></author>
<title>J. Phys. Chem. Ref. Data</title>
</host>
<title>Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with saturated organic compounds in the gas phase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.P. Hitchcock</name>
</json:item>
<json:item>
<name>C.E. Brion</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>478</last>
<first>461</first>
</pages>
<author></author>
<title>Chem. Phys</title>
</host>
<title>Absolute oscillator strengths for valence-shell ionic photofragmentation of N2O and CO2 (8–75 eV)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.J. Hochanadel</name>
</json:item>
<json:item>
<name>T.J. Sworski</name>
</json:item>
<json:item>
<name>P.J. Ogren</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<last>235</last>
<first>231</first>
</pages>
<author></author>
<title>J. Phys. Chem</title>
</host>
<title>Ultraviolet spectrum and reaction kinetics of the formyl radical</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Höhlein</name>
</json:item>
<json:item>
<name>G.R. Freeman</name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<last>6125</last>
<first>6118</first>
</pages>
<author></author>
<title>J. Am. Chem. Soc</title>
</host>
<title>Radiation-sensitized pyrolysis of dimethyl ether. Free-radical reaction rate parameters</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.W. Hughes</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>604</last>
<first>593</first>
</pages>
<author></author>
<title>Q. J. R. Astron. Soc</title>
</host>
<title>The size, mass and evolution of the Solar System dust cloud</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.H. Humes</name>
</json:item>
</author>
<host>
<volume>85</volume>
<pages>
<last>5852</last>
<first>5841</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
<title>Results of Pioneer 10 and 11 meteoroid experiments: Interplanetary and near Saturn</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.M. Hunten</name>
</json:item>
<json:item>
<name>R.P. Turco</name>
</json:item>
<json:item>
<name>O.B. Toon</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>1357</last>
<first>1342</first>
</pages>
<author></author>
<title>J. Atmos. Sci</title>
</host>
<title>Smoke and dust particles of meteoric origin in the mesosphere and stratosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.H. Ip</name>
</json:item>
</author>
<host>
<volume>88</volume>
<pages>
<last>822</last>
<first>819</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
<title>On plasma transport in the vicinity of the rings of Saturn: A siphon flow mechanism</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.S. Johnston</name>
</json:item>
<json:item>
<name>M. Paige</name>
</json:item>
<json:item>
<name>F. Yao</name>
</json:item>
</author>
<host>
<volume>89</volume>
<pages>
<last>11665</last>
<first>11661</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
<title>Oxygen absorption cross sections in the Herzberg continuum and between 206 K and 327 K</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Karkoschka</name>
</json:item>
<json:item>
<name>M.G. Tomasko</name>
</json:item>
</author>
<host>
<volume>106</volume>
<pages>
<last>441</last>
<first>428</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Saturn's upper atmospheric hazes observed by the Hubble Space Telescope</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.M. Kary</name>
</json:item>
<json:item>
<name>L. Dones</name>
</json:item>
</author>
<host>
<volume>121</volume>
<pages>
<last>224</last>
<first>207</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Capture statistics of short-period comets: Implications for Comet D/Shoemaker–Levy 9</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.F. Kessler</name>
</json:item>
<json:item>
<name>J.A. Steinz</name>
</json:item>
<json:item>
<name>M.E. Anderegg</name>
</json:item>
<json:item>
<name>J. Clavel</name>
</json:item>
<json:item>
<name>G. Drechsel</name>
</json:item>
<json:item>
<name>P. Esteria</name>
</json:item>
<json:item>
<name>J. Faelker</name>
</json:item>
<json:item>
<name>J.R. Riedinger</name>
</json:item>
<json:item>
<name>A. Robson</name>
</json:item>
<json:item>
<name>B.G. Taylor</name>
</json:item>
<json:item>
<name>S. Ximenz de Ferrán</name>
</json:item>
</author>
<host>
<volume>315</volume>
<pages>
<last>30</last>
<first>27</first>
</pages>
<author></author>
<title>Astron. Astrophys</title>
</host>
<title>The Infrared Space Observatory (ISO) mission</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.E. Kirby</name>
</json:item>
<json:item>
<name>R. Constantinides</name>
</json:item>
<json:item>
<name>S. Babeu</name>
</json:item>
<json:item>
<name>M. Oppenheimer</name>
</json:item>
<json:item>
<name>G.A. Victor</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>81</last>
<first>63</first>
</pages>
<author></author>
<title>Atomic Data Nucl. Data Tables</title>
</host>
<title>Photoionization and photoabsorption cross-sections of He, O, N2 and O2 for aeronomic calculations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Kley</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>210</last>
<first>203</first>
</pages>
<author></author>
<title>J. Atmos. Chem</title>
</host>
<title>Ly (α) absorption cross-section of H2O and O2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. König</name>
</json:item>
<json:item>
<name>S. Mory</name>
</json:item>
<json:item>
<name>A. Rosenfeld</name>
</json:item>
<json:item>
<name>J. Lademann</name>
</json:item>
<json:item>
<name>R. Grundwald</name>
</json:item>
<json:item>
<name>G. Winkelmann</name>
</json:item>
</author>
<host>
<volume>114</volume>
<pages>
<last>104</last>
<first>101</first>
</pages>
<author></author>
<title>J. Mol. Struct</title>
</host>
<title>Laser absorption and fluorescence spectroscopy of excited molecules in nanosecond time scale</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Landgraf</name>
</json:item>
<json:item>
<name>J.-C. Liou</name>
</json:item>
<json:item>
<name>H.A. Zook</name>
</json:item>
<json:item>
<name>E. Grün</name>
</json:item>
</author>
<host>
<volume>30</volume>
<author></author>
<title>Lunar Planet. Sci. Conf</title>
</host>
<title>Multi spacecraft data on dust in the outer solar system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.A. Lange</name>
</json:item>
<json:item>
<name>T.J. Ahrens</name>
</json:item>
</author>
<host>
<volume>69</volume>
<pages>
<last>518</last>
<first>506</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Impact experiments in low-temperature ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.M. Lara</name>
</json:item>
<json:item>
<name>E. Lellouch</name>
</json:item>
<json:item>
<name>J.J. López-Moreno</name>
</json:item>
<json:item>
<name>R. Rodrigo</name>
</json:item>
</author>
<host>
<volume>113</volume>
<pages>
<last>23,284</last>
<first>23,261</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Vertical distribution of Titan's atmospheric neutral constituents</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.M. Lawrence</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>3442</last>
<first>3435</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Photodissociation of CO2 to produce CO(a3II)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.M. Lawrence</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>5617</last>
<first>5616</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Production of O(1S) from photodissociation of CO2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.C. Lee</name>
</json:item>
<json:item>
<name>M. Suto</name>
</json:item>
</author>
<host>
<volume>110</volume>
<pages>
<last>169</last>
<first>161</first>
</pages>
<author></author>
<title>Chem. Phys</title>
</host>
<title>Quantatative photoabsorption and fluorescence study of H2O and D2O at 50–190 nm</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.C. Lee</name>
</json:item>
<json:item>
<name>T.G. Slanger</name>
</json:item>
<json:item>
<name>G. Black</name>
</json:item>
<json:item>
<name>R.L. Sharpless</name>
</json:item>
</author>
<host>
<volume>67</volume>
<pages>
<last>5606</last>
<first>5602</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Quantum yields for the production of O(1D) from photodissociation of O2 at 1160–1770 Å</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Lellouch</name>
</json:item>
<json:item>
<name>B. Bézard</name>
</json:item>
<json:item>
<name>R. Moreno</name>
</json:item>
<json:item>
<name>D. Bockelée-Morvan</name>
</json:item>
<json:item>
<name>P. Colom</name>
</json:item>
<json:item>
<name>J. Crovisier</name>
</json:item>
<json:item>
<name>M. Festou</name>
</json:item>
<json:item>
<name>D. Gautier</name>
</json:item>
<json:item>
<name>A. Marten</name>
</json:item>
<json:item>
<name>G. Paubert</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>1212</last>
<first>1203</first>
</pages>
<author></author>
<title>Planet. Space Sci</title>
</host>
<title>Carbon monoxide in Jupiter after the impact of Comet Shoemaker–Levy 9</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Lellouch</name>
</json:item>
<json:item>
<name>H. Feuchtgruber</name>
</json:item>
<json:item>
<name>T. de Graauw</name>
</json:item>
<json:item>
<name>T. Encrenaz</name>
</json:item>
<json:item>
<name>B. Bézard</name>
</json:item>
<json:item>
<name>M. Griffin</name>
</json:item>
<json:item>
<name>G. Davis</name>
</json:item>
</author>
<host>
<pages>
<last>22</last>
<first>21</first>
</pages>
<author></author>
<title>International Symposium: The Jovian System after Galileo, the Saturnian System before Cassini–Huygens</title>
</host>
<title>D/H ratio and oxygen source: A Jupiter-Saturn comparison</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Letzelter</name>
</json:item>
<json:item>
<name>M. Eidelsberg</name>
</json:item>
<json:item>
<name>F. Rostas</name>
</json:item>
<json:item>
<name>J. Breton</name>
</json:item>
<json:item>
<name>B. Thieblemont</name>
</json:item>
</author>
<host>
<volume>114</volume>
<pages>
<last>288</last>
<first>273</first>
</pages>
<author></author>
<title>Chem. Phys</title>
</host>
<title>Photoabsorption and photodissociation cross sections of CO between 88.5 and 115 nm</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.F. Levison</name>
</json:item>
<json:item>
<name>M.J. Duncan</name>
</json:item>
</author>
<host>
<volume>127</volume>
<pages>
<last>32</last>
<first>13</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>From the Kuiper belt to Jupiter-family comets: The spatial distribution of ecliptic comets</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.R. Lewis</name>
</json:item>
<json:item>
<name>J.H. Carver</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>309</last>
<first>297</first>
</pages>
<author></author>
<title>J. Quant. Spectrosc. Radiat. Trans</title>
</host>
<title>Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 1970 Å</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.R. Lewis</name>
</json:item>
<json:item>
<name>S.T. Gibson</name>
</json:item>
<json:item>
<name>M. Emami</name>
</json:item>
<json:item>
<name>J.H. Carver</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>13</last>
<first>1</first>
</pages>
<author></author>
<title>J. Quant. Spectrosc. Radiat. Trans</title>
</host>
<title>Resonances in the photodissociation of isotopic molecular oxygen. I. The longest band</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.R. Lewis</name>
</json:item>
<json:item>
<name>S.T. Gibson</name>
</json:item>
<json:item>
<name>M. Emami</name>
</json:item>
<json:item>
<name>J.H. Carver</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>477</last>
<first>469</first>
</pages>
<author></author>
<title>J. Quant. Spectrosc. Radiat. Trans</title>
</host>
<title>Resonances in the photodissociation of isotopic molecular oxygen. II. The second and third bands</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.-C. Liou</name>
</json:item>
<json:item>
<name>H.A. Zook</name>
</json:item>
<json:item>
<name>S.F. Dermott</name>
</json:item>
</author>
<host>
<volume>124</volume>
<pages>
<last>440</last>
<first>429</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Kuiper belt dust grains as a source of interplanetary dust particles</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.-C. Liou</name>
</json:item>
<json:item>
<name>H.A. Zook</name>
</json:item>
<json:item>
<name>A.A. Jackson</name>
</json:item>
</author>
<host>
<volume>141</volume>
<pages>
<last>28</last>
<first>13</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Orbital evolution of retrograde interplanetary dust particles and their distribution in the Solar System</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.G. Love</name>
</json:item>
<json:item>
<name>D.E. Brownlee</name>
</json:item>
</author>
<host>
<volume>262</volume>
<pages>
<last>553</last>
<first>550</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>A direct measurement of the terrestrial mass accretion rate of cosmic dust</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Atmospheric Chemistry of the Outer Solar System: From 40 K to 4000 K.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Majeed</name>
</json:item>
<json:item>
<name>J.C. McConnell</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>1732</last>
<first>1715</first>
</pages>
<author></author>
<title>Planet. Space Sci</title>
</host>
<title>The upper ionospheres of Jupiter and Saturn</title>
</json:item>
<json:item>
<host>
<author></author>
<title>NIST Chemical Kinetics Database: Version 6.0</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Catalogue of Cometary Orbits 1995.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Marti</name>
</json:item>
<json:item>
<name>K. Mauersberger</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>366</last>
<first>363</first>
</pages>
<author></author>
<title>Geophys. Res. Lett</title>
</host>
<title>A survey and new measurements of ice vapor-pressures at temperatures between 170 and 250 K</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F.M. Matsunaga</name>
</json:item>
<json:item>
<name>K. Watanabe</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>42</last>
<first>31</first>
</pages>
<author></author>
<title>Sci. Light</title>
</host>
<title>Total and photoionization coefficients and dissociation continua of O2 in the 580–1070 Å region</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.E. Mentall</name>
</json:item>
<json:item>
<name>E.P. Gentieu</name>
</json:item>
<json:item>
<name>M. Krauss</name>
</json:item>
<json:item>
<name>D. Neumann</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>5479</last>
<first>5471</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Photoionization and absorption spectrum of formaldehyde in the vacuum ultraviolet</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Miyoshi</name>
</json:item>
<json:item>
<name>H. Matsui</name>
</json:item>
<json:item>
<name>N. Washida</name>
</json:item>
</author>
<host>
<volume>93</volume>
<pages>
<last>5818</last>
<first>5813</first>
</pages>
<author></author>
<title>J. Phys. Chem</title>
</host>
<title>Reaction of acetaldehyde and acetyl radical with atomic and molecular oxygen</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.E. Morfill</name>
</json:item>
<json:item>
<name>H. Fechtig</name>
</json:item>
<json:item>
<name>E. Grün</name>
</json:item>
<json:item>
<name>C.K. Goertz</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>447</last>
<first>439</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Some consequences of meteoroid impacts on Saturn's rings</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.I. Moses</name>
</json:item>
</author>
<host>
<volume>99</volume>
<pages>
<last>383</last>
<first>368</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Meteoroid ablation in Neptune's atmosphere</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J.I. Moses</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<first>1427</first>
</pages>
<author></author>
<title>Lunar Planet. Sci. Conf</title>
</host>
<title>Micrometeoritic bombardment of Saturn. I. Ablation profiles</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.I. Moses</name>
</json:item>
<json:item>
<name>M. Allen</name>
</json:item>
<json:item>
<name>G.R. Gladstone</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>1604</last>
<first>1601</first>
</pages>
<author></author>
<title>Geophys. Res. Lett</title>
</host>
<title>Nitrogen and oxygen photochemistry following SL9</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.I. Moses</name>
</json:item>
<json:item>
<name>K. Rages</name>
</json:item>
<json:item>
<name>J.B. Pollack</name>
</json:item>
</author>
<host>
<volume>113</volume>
<pages>
<last>266</last>
<first>232</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>An analysis of Neptune's stratospheric haze using high-phase-angle Voyager images</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.I. Moses</name>
</json:item>
<json:item>
<name>B. Bézard</name>
</json:item>
<json:item>
<name>E. Lellouch</name>
</json:item>
<json:item>
<name>G.R. Gladstone</name>
</json:item>
<json:item>
<name>H. Feuchtgruber</name>
</json:item>
<json:item>
<name>M. Allen</name>
</json:item>
</author>
<host>
<volume>143</volume>
<pages>
<last>298</last>
<first>244</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Photochemistry of the upper atmosphere of Saturn. I. Hydrocarbon photochemistry and comparisons with ISO observations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.A. Mulenko</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>178</last>
<first>173</first>
</pages>
<author></author>
<title>Rev. Roum. Phys</title>
</host>
<title>The application of an intracavity laser spectroscopy method for elementary processes study in gas-phase reactions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.S. Nakata</name>
</json:item>
<json:item>
<name>K. Watanabe</name>
</json:item>
<json:item>
<name>F.M. Matsunaga</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>71</last>
<first>54</first>
</pages>
<author></author>
<title>Sci. Light</title>
</host>
<title>Absorption and photoionization coefficient of CO2 in the region 580–1670 Å</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.B. Nee</name>
</json:item>
<json:item>
<name>L.C. Lee</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>36</last>
<first>31</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Photoabsorption cross sections of OH at 115–183 nm</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.B. Nee</name>
</json:item>
<json:item>
<name>M. Suto</name>
</json:item>
<json:item>
<name>L.C. Lee</name>
</json:item>
</author>
<host>
<volume>98</volume>
<pages>
<last>155</last>
<first>147</first>
</pages>
<author></author>
<title>Chem. Phys</title>
</host>
<title>Photoexcitation processes of CH3OH: Rydberg states and photofragment fluorescence</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Nicolet</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>1468</last>
<first>1467</first>
</pages>
<author></author>
<title>Planet. Space Sci</title>
</host>
<title>On the molecular scattering in the terrestrial atmosphere: An empirical formula for its calculation in the homosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.S. Noll</name>
</json:item>
<json:item>
<name>H.P. Larson</name>
</json:item>
</author>
<host>
<volume>89</volume>
<pages>
<last>189</last>
<first>168</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>The spectrum of Saturn from 1990 to 2230 cm−1: Abundances of AsH3, CH3D, CO, GeH4, NH3, and PH3</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.S. Noll</name>
</json:item>
<json:item>
<name>R.F. Knacke</name>
</json:item>
<json:item>
<name>T.R. Geballe</name>
</json:item>
<json:item>
<name>A.T. Tokunaga</name>
</json:item>
</author>
<host>
<volume>309</volume>
<pages>
<last>94</last>
<first>91</first>
</pages>
<author></author>
<title>Astrophys. J</title>
</host>
<title>The detection of carbon monoxide in Saturn</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.G. Northrop</name>
</json:item>
<json:item>
<name>J.R. Hill</name>
</json:item>
</author>
<host>
<volume>87</volume>
<pages>
<last>6051</last>
<first>6045</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
<title>The stability of negatively charged dust grains in Saturn's ring plane</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.G. Northrop</name>
</json:item>
<json:item>
<name>J.R. Hill</name>
</json:item>
</author>
<host>
<volume>88</volume>
<pages>
<last>6108</last>
<first>6102</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
<title>The inner edge of Saturn's B ring</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Ogawa</name>
</json:item>
<json:item>
<name>M. Ogawa</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>1852</last>
<first>1845</first>
</pages>
<author></author>
<title>Can. J. Phys</title>
</host>
<title>Absorption cross sections of O2 (X3Σg−) in the region from 1087 to 1700 Å</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Ohmori</name>
</json:item>
<json:item>
<name>A. Miyoshi</name>
</json:item>
<json:item>
<name>H. Matsui</name>
</json:item>
<json:item>
<name>N. Washida</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>3255</last>
<first>3253</first>
</pages>
<author></author>
<title>J. Phys. Chem</title>
</host>
<title>Studies on the reaction of acetaldehyde and acetyl radicals with atomic hydrogen</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Photochemistry of Small Molecules</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J.L. Ollivier</name>
</json:item>
<json:item>
<name>M. Dobrijévic</name>
</json:item>
<json:item>
<name>J.P. Parisot</name>
</json:item>
</author>
<host>
<author></author>
<title>Planet. Space Sci</title>
</host>
<title>New photochemical model of Saturn's atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.J. Öpik</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>199</last>
<first>165</first>
</pages>
<author></author>
<title>Proc. R. Irish Acad. A</title>
</host>
<title>Collision probabilities with the planets and the distribution of interplanetary matter</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Oser</name>
</json:item>
<json:item>
<name>N.D. Stothard</name>
</json:item>
<json:item>
<name>R. Humpfer</name>
</json:item>
<json:item>
<name>H.H. Grotheer</name>
</json:item>
</author>
<host>
<volume>96</volume>
<pages>
<last>5363</last>
<first>5359</first>
</pages>
<author></author>
<title>J. Phys. Chem</title>
</host>
<title>Direct measurement of the reaction CH3+OH at ambient temperature in the pressure range 0.3–6.2 mbar</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.C. Person</name>
</json:item>
<json:item>
<name>P.P. Nicole</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>3397</last>
<first>3390</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Isotope effects in the photoionization yields and in the absorption cross sections for methanol, ethanol, methyl bromide, and ethyl bromide</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Prangé</name>
</json:item>
<json:item>
<name>T. Fouchet</name>
</json:item>
<json:item>
<name>J.E.P. Connerney</name>
</json:item>
<json:item>
<name>R. Courtin</name>
</json:item>
</author>
<host>
<author></author>
<title>Proc. of Les rencontres de Blois, June 22–27, Blois, France</title>
</host>
<title>FUV remote sensing of the stratosphere of Saturn with the Hubble Space Telescope: Search for the signature of water originating from the rings</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Prangé</name>
</json:item>
<json:item>
<name>T. Fouchet</name>
</json:item>
<json:item>
<name>R. Courtin</name>
</json:item>
</author>
<host>
<pages>
<last>26</last>
<first>25</first>
</pages>
<author></author>
<title>International Symposium: The Jovian System after Galileo, the Saturnian System before Cassini-Huygens</title>
</host>
<title>FUV remote sensing of the atmosphere of Saturn with HST: Polar haze and latitudinal dependence of water abundance</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.J. Prather</name>
</json:item>
<json:item>
<name>J.A. Logan</name>
</json:item>
<json:item>
<name>M.B. McElroy</name>
</json:item>
</author>
<host>
<volume>223</volume>
<pages>
<last>1081</last>
<first>1072</first>
</pages>
<author></author>
<title>Astrophys. J</title>
</host>
<title>Carbon monoxide in Jupiter's upper atmosphere: An extraplanetary source</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.N. Pravilov</name>
</json:item>
<json:item>
<name>I.O. Shul'pyakov</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>35</last>
<first>31</first>
</pages>
<author></author>
<title>High Energy Chem. USSR</title>
</host>
<title>Processes of H2O and NO2 photodissociation in the spectral region of λ>155 nm</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Microphysics of Clouds and Precipitation</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>The Properties of Liquids and Gases</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Rizk</name>
</json:item>
<json:item>
<name>D.M. Hunten</name>
</json:item>
</author>
<host>
<volume>88</volume>
<pages>
<last>447</last>
<first>429</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Solar heating of the uranian mesopause by dust of ring origin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.N. Romani</name>
</json:item>
<json:item>
<name>S.K. Atreya</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>944</last>
<first>941</first>
</pages>
<author></author>
<title>Geophys. Res. Lett</title>
</host>
<title>Stratospheric aerosols from CH4 photochemistry on Neptune</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Rosenqvist</name>
</json:item>
<json:item>
<name>E. Lellouch</name>
</json:item>
<json:item>
<name>P.N. Romani</name>
</json:item>
<json:item>
<name>G. Paubert</name>
</json:item>
<json:item>
<name>T. Encrenaz</name>
</json:item>
</author>
<host>
<volume>392</volume>
<pages>
<last>102</last>
<first>99</first>
</pages>
<author></author>
<title>Astrophys. J</title>
</host>
<title>Millimeter-wave observations of Saturn, Uranus, and Neptune: CO and HCN on Neptune</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A.R. Samson</name>
</json:item>
<json:item>
<name>G. Haddad</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<first>48</first>
</pages>
<author></author>
<title>J. Phys. Chem. Ref. Data</title>
</host>
<title>Absolute cross-sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A.R. Samson</name>
</json:item>
<json:item>
<name>J.L. Gardner</name>
</json:item>
<json:item>
<name>G.N. Haddad</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>292</last>
<first>281</first>
</pages>
<author></author>
<title>J. Electron Spect. Relat. Phenom</title>
</host>
<title>Total and partial photoionization cross-sections of O2 from 100 to 800 Å</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A.R. Samson</name>
</json:item>
<json:item>
<name>G.H. Rayborn</name>
</json:item>
<json:item>
<name>P.N. Pareek</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>397</last>
<first>393</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Dissociative photoionization cross sections of O2 from threshold to 120 Å</title>
</json:item>
<json:item>
<host>
<volume>88</volume>
<pages>
<last>8715</last>
<first>8709</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Satyapal</name>
</json:item>
<json:item>
<name>J. Park</name>
</json:item>
<json:item>
<name>R. Bersohn</name>
</json:item>
<json:item>
<name>B. Katz</name>
</json:item>
</author>
<host>
<volume>91</volume>
<pages>
<last>6879</last>
<first>6873</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Dissociation of methanol and ethanol activated by a chemical reaction or by light</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Scherzer</name>
</json:item>
<json:item>
<name>U. Loser</name>
</json:item>
<json:item>
<name>W. Stiller</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>301</last>
<first>300</first>
</pages>
<author></author>
<title>Z. Chem</title>
</host>
<title>BSBL-rechnungen zu wasserstoffabspaltungsreaktionen durch alkenylradikale; vinylradikale</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Atmospheric Chemistry and Physics of Air Pollution</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D.E. Shemansky</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>1587</last>
<first>1582</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>CO2 extinction coefficient 1700–3000 Å</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Simonaitis</name>
</json:item>
<json:item>
<name>J. Heicklen</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>2011</last>
<first>2004</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Kinetics and mechanism of the reaction of O(3P) with carbon monoxide</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.G. Slanger</name>
</json:item>
<json:item>
<name>G. Black</name>
</json:item>
</author>
<host>
<volume>68</volume>
<pages>
<last>1849</last>
<first>1844</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>CO2 photolysis revisited</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.G. Slanger</name>
</json:item>
<json:item>
<name>G. Black</name>
</json:item>
</author>
<host>
<volume>77</volume>
<pages>
<last>2437</last>
<first>2432</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Photodissociative channels at 1216 Å for H2O, NH3, and CH4</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.R. Smith</name>
</json:item>
<json:item>
<name>D.E. Shemansky</name>
</json:item>
<json:item>
<name>J.B. Holberg</name>
</json:item>
<json:item>
<name>A.L. Broadfoot</name>
</json:item>
<json:item>
<name>B.R. Sandel</name>
</json:item>
<json:item>
<name>J.C. McConnell</name>
</json:item>
</author>
<host>
<volume>88</volume>
<pages>
<last>8678</last>
<first>8667</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
<title>Saturn's upper atmosphere from the Voyager 2 EUV solar and stellar occultations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Stark</name>
</json:item>
<json:item>
<name>K. Yoshino</name>
</json:item>
<json:item>
<name>P.L. Smith</name>
</json:item>
<json:item>
<name>K. Ito</name>
</json:item>
<json:item>
<name>W.H. Parkinson</name>
</json:item>
</author>
<host>
<volume>369</volume>
<pages>
<last>580</last>
<first>574</first>
</pages>
<author></author>
<title>Astrophys. J</title>
</host>
<title>High resolution absorption cross sections of carbon monoxide bands at 295 K between 91.7 and 100.4 nanometers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.A. Stern</name>
</json:item>
</author>
<host>
<volume>110</volume>
<pages>
<last>868</last>
<first>856</first>
</pages>
<author></author>
<title>Astron. J</title>
</host>
<title>Collisional time scales in the Kuiper disk and their implications</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.V. Stief</name>
</json:item>
<json:item>
<name>W.A. Payne</name>
</json:item>
<json:item>
<name>R.B. Klemm</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>4008</last>
<first>4000</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>A flash photolysis-resonance fluorescence study of the formation of O(1D) in the photolysis of water and the reaction of O(1D) with H2, Ar, and He</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.F. Strobel</name>
</json:item>
<json:item>
<name>Y.L. Yung</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>263</last>
<first>256</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>The Galilean satellites as a source of CO in the jovian upper atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.E. Summers</name>
</json:item>
<json:item>
<name>D.F. Strobel</name>
</json:item>
</author>
<host>
<volume>346</volume>
<pages>
<last>508</last>
<first>495</first>
</pages>
<author></author>
<title>Astrophys. J</title>
</host>
<title>Photochemistry of the atmophere of Uranus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Suto</name>
</json:item>
<json:item>
<name>X. Wang</name>
</json:item>
<json:item>
<name>L.C. Lee</name>
</json:item>
</author>
<host>
<volume>85</volume>
<pages>
<last>4233</last>
<first>4228</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Fluorescence from VUV excitation of formaldehyde</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.D. Taylor</name>
</json:item>
<json:item>
<name>W.J. Baggaley</name>
</json:item>
<json:item>
<name>D.I. Steel</name>
</json:item>
</author>
<host>
<volume>380</volume>
<pages>
<last>325</last>
<first>323</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Discovery of interstellar dust entering the Earth's atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.A. Thompson</name>
</json:item>
<json:item>
<name>P. Harteck</name>
</json:item>
<json:item>
<name>R.R. Reeves</name>
</json:item>
</author>
<host>
<volume>68</volume>
<pages>
<last>6436</last>
<first>6431</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
<title>Ultraviolet absorption coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 between 1850 and 4000 Å</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Toublanc</name>
</json:item>
<json:item>
<name>J.P. Parisot</name>
</json:item>
<json:item>
<name>J. Brillet</name>
</json:item>
<json:item>
<name>D. Gautier</name>
</json:item>
<json:item>
<name>F. Raulin</name>
</json:item>
<json:item>
<name>C.P. McKay</name>
</json:item>
</author>
<host>
<volume>113</volume>
<pages>
<last>26</last>
<first>2</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Photochemical modeling of Titan's atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Tsang</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>508</last>
<first>471</first>
</pages>
<author></author>
<title>J. Phys. Chem. Ref. Data</title>
</host>
<title>Chemical kinetic data base for combustion chemistry. 2. Methanol</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Tsang</name>
</json:item>
<json:item>
<name>R.F. Hampson</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>1279</last>
<first>1087</first>
</pages>
<author></author>
<title>J. Phys. Chem. Ref. Data</title>
</host>
<title>Chemical kinetic data base for combustion chemistry. Part 1. Methane and related compounds</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.F. van Dishoeck</name>
</json:item>
<json:item>
<name>A. Dalgarno</name>
</json:item>
</author>
<host>
<volume>277</volume>
<pages>
<last>580</last>
<first>576</first>
</pages>
<author></author>
<title>Astrophys. J</title>
</host>
<title>Photodissociation of OH in interstellar clouds</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.F. van Dishoeck</name>
</json:item>
<json:item>
<name>M.C. van Hemert</name>
</json:item>
<json:item>
<name>A.C. Allison</name>
</json:item>
<json:item>
<name>A. Dalgarno</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>5724</last>
<first>5709</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Resonances in the photodissociation of OH by absorption into coupled 2II states—Adiabatic and diabatic formulations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.F. Wagner</name>
</json:item>
<json:item>
<name>J.M. Bowman</name>
</json:item>
</author>
<host>
<volume>91</volume>
<pages>
<last>5324</last>
<first>5314</first>
</pages>
<author></author>
<title>J. Phys. Chem</title>
</host>
<title>The addition and dissociation reaction H+CO⇌HCO. 1. Theoretical RRKM studies</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Wang</name>
</json:item>
<json:item>
<name>D.G. McCoy</name>
</json:item>
<json:item>
<name>A.J. Blake</name>
</json:item>
<json:item>
<name>L. Torop</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>27</last>
<first>19</first>
</pages>
<author></author>
<title>J. Quant. Spectrosc. Radiat. Trans</title>
</host>
<title>Effects of the close approach of potential curves in photoabsorption by diatomic molecules. II. Temperature dependence of the O2 cross section in the region 130–160 nm</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.W. Washburn</name>
</json:item>
</author>
<host>
<pages>
<last>490</last>
<first>488</first>
</pages>
<author></author>
<title>Monthly Weather Rev</title>
</host>
<title>The vapor pressure of ice and of water below the freezing point</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Watanabe</name>
</json:item>
<json:item>
<name>M. Zelikoff</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>755</last>
<first>753</first>
</pages>
<author></author>
<title>J. Opt. Soc. Am</title>
</host>
<title>Absorption coefficients of water vapor in the vacuum ultraviolet</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.W. Watkins</name>
</json:item>
<json:item>
<name>W.W. Word</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>873</last>
<first>855</first>
</pages>
<author></author>
<title>Int. J. Chem. Kinet</title>
</host>
<title>Addition of methyl radicals to carbon monoxide: Chemically and thermally activated decomposition of acetyl radicals</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R.A. West</name>
</json:item>
<json:item>
<name>M. Sato</name>
</json:item>
<json:item>
<name>H. Hart</name>
</json:item>
<json:item>
<name>A.L. Lane</name>
</json:item>
<json:item>
<name>C.W. Hord</name>
</json:item>
<json:item>
<name>K.E. Simmons</name>
</json:item>
<json:item>
<name>L.W. Esposito</name>
</json:item>
<json:item>
<name>D.L. Coffeen</name>
</json:item>
<json:item>
<name>R.B. Pomphrey</name>
</json:item>
</author>
<host>
<volume>88</volume>
<pages>
<last>8697</last>
<first>8679</first>
</pages>
<author></author>
<title>J. Geophys. Res</title>
</host>
<title>Photometry and polarimetry of Saturn at 2640 and 7500 Å</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.A. Whytock</name>
</json:item>
<json:item>
<name>J.V. Michael</name>
</json:item>
<json:item>
<name>W.A. Payne</name>
</json:item>
<json:item>
<name>L.J. Stief</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>4875</last>
<first>4871</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Absolute rate of the reaction of atomic hydrogen with acetaldehyde</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Winkelstein</name>
</json:item>
<json:item>
<name>J. Caldwell</name>
</json:item>
<json:item>
<name>S.J. Kim</name>
</json:item>
<json:item>
<name>M. Combes</name>
</json:item>
<json:item>
<name>G.E. Hunt</name>
</json:item>
<json:item>
<name>V. Moore</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>318</last>
<first>309</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>A determination of the composition of the saturnian stratosphere using the IUE</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Witte</name>
</json:item>
<json:item>
<name>H. Rosenbauser</name>
</json:item>
<json:item>
<name>M. Banaszkiewicz</name>
</json:item>
<json:item>
<name>H. Fahr</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>130</last>
<first>121</first>
</pages>
<author></author>
<title>Adv. Space Res</title>
</host>
<title>The Ulysses neutral gas experiment: Determination of the velocity and temperature of interstellar neutral helium</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.R. Wright</name>
</json:item>
<json:item>
<name>M.J. Van der Wiel</name>
</json:item>
<json:item>
<name>C.E. Brion</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>689</last>
<first>675</first>
</pages>
<author></author>
<title>J. Phys. B</title>
</host>
<title>Dipole excitation and fragmentation of N2 and CO in the 10–60 eV region</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.Y.R. Wu</name>
</json:item>
<json:item>
<name>D.L. Judge</name>
</json:item>
</author>
<host>
<volume>75</volume>
<pages>
<last>178</last>
<first>172</first>
</pages>
<author></author>
<title>J. Chem. Phys</title>
</host>
<title>Lyman-α fluorescence from hydrogen photofragments of CH4 and H2O</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Yamamoto</name>
</json:item>
<json:item>
<name>T. Mukai</name>
</json:item>
</author>
<host>
<volume>329</volume>
<pages>
<last>791</last>
<first>785</first>
</pages>
<author></author>
<title>Astron. Astrophys</title>
</host>
<title>Dust production by impacts of interstellar dust on Edgeworth-Kuiper Belt objects</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Yoshino</name>
</json:item>
<json:item>
<name>A.S.-C. Cheung</name>
</json:item>
<json:item>
<name>J.R. Esmond</name>
</json:item>
<json:item>
<name>W.H. Parkinson</name>
</json:item>
<json:item>
<name>D.E. Freeman</name>
</json:item>
<json:item>
<name>S.L. Guberman</name>
</json:item>
<json:item>
<name>A. Jenouvrier</name>
</json:item>
<json:item>
<name>B. Coquart</name>
</json:item>
<json:item>
<name>M.F. Merienne</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>1475</last>
<first>1469</first>
</pages>
<author></author>
<title>Planet. Sci</title>
</host>
<title>Improved absorption cross-sections of oxygen in the wavelength region 205–240 nm of the Herzberg continuum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Yoshino</name>
</json:item>
<json:item>
<name>J.R. Esmond</name>
</json:item>
<json:item>
<name>A.S.-C. Cheung</name>
</json:item>
<json:item>
<name>D.E. Freeman</name>
</json:item>
<json:item>
<name>W.H. Parkinson</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>192</last>
<first>185</first>
</pages>
<author></author>
<title>Planet. Space Sci</title>
</host>
<title>High resolution absorption cross sections in the transmission window region of the Schumann–Runge bands and Herzberg continuum of O2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Yoshino</name>
</json:item>
<json:item>
<name>D.E. Freeman</name>
</json:item>
<json:item>
<name>J.R. Esmond</name>
</json:item>
<json:item>
<name>W.H. Parkinson</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>1075</last>
<first>1067</first>
</pages>
<author></author>
<title>Planet. Space Sci</title>
</host>
<title>High resolution absorption cross-sections and band oscillator strengths of the Schumann–Runge bands of oxygen at 79 K</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y.L. Yung</name>
</json:item>
<json:item>
<name>M. Allen</name>
</json:item>
<json:item>
<name>J.P. Pinto</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>506</last>
<first>465</first>
</pages>
<author></author>
<title>Astrophys. J. Suppl. Ser</title>
</host>
<title>Photochemistry of the atmosphere of Titan: Comparison between model and observations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Zabarnick</name>
</json:item>
<json:item>
<name>J.W. Fleming</name>
</json:item>
<json:item>
<name>M.C. Lin</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>719</last>
<first>713</first>
</pages>
<author></author>
<title>Symp. Int. Combust. Proc</title>
</host>
<title>Temperature dependence of CH radical reactions with H2O and CH2O</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Zahnle</name>
</json:item>
<json:item>
<name>L. Dones</name>
</json:item>
<json:item>
<name>H. Levison</name>
</json:item>
</author>
<host>
<volume>136</volume>
<pages>
<last>222</last>
<first>202</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Cratering rates on the Galilean satellites</title>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>145</volume>
<pii>
<json:string>S0019-1035(00)X0018-8</json:string>
</pii>
<pages>
<last>202</last>
<first>166</first>
</pages>
<issn>
<json:string>0019-1035</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Icarus</title>
<publicationDate>2000</publicationDate>
</host>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1006/icar.1999.6320</json:string>
</doi>
<id>DA0AF197299235245290697937CD2FE3A7361212</id>
<score>0.099943526</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/DA0AF197299235245290697937CD2FE3A7361212/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/DA0AF197299235245290697937CD2FE3A7361212/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DA0AF197299235245290697937CD2FE3A7361212/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<title level="a" type="sub" xml:lang="en">II. Effects of an Influx of External Oxygen</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Academic Press</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Regular Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Photochemistry of Saturn's Atmosphere</title>
<title level="a" type="sub" xml:lang="en">II. Effects of an Influx of External Oxygen</title>
<author xml:id="author-1">
<persName>
<forename type="first">Julianne I.</forename>
<surname>Moses</surname>
</persName>
<affiliation>Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058-1113, f1 moses@lpi.usra.eduf1</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Emmanuel</forename>
<surname>Lellouch</surname>
</persName>
<affiliation>DESPA, Observatoire de Paris, Meudon, 92195, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Bruno</forename>
<surname>Bézard</surname>
</persName>
<affiliation>DESPA, Observatoire de Paris, Meudon, 92195, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">G.Randall</forename>
<surname>Gladstone</surname>
</persName>
<affiliation>Space Sciences Department, Southwest Research Institute, San Antonio, Texas, 78228-0510</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Helmut</forename>
<surname>Feuchtgruber</surname>
</persName>
<affiliation>Max-Planck Institut für Extraterrestrische Physik, Garching, 85740, Germany</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Mark</forename>
<surname>Allen</surname>
</persName>
<note type="biography">Also at Division for Geological and Planetary Sciences, Caltech 170-25, Pasadena, CA 91125.</note>
<affiliation>Also at Division for Geological and Planetary Sciences, Caltech 170-25, Pasadena, CA 91125.</affiliation>
<affiliation>Earth and Space Science Division, Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, Pasadena, California, 91109</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Icarus</title>
<title level="j" type="abbrev">YICAR</title>
<idno type="pISSN">0019-1035</idno>
<idno type="PII">S0019-1035(00)X0018-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">145</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="166">166</biblScope>
<biblScope unit="page" to="202">202</biblScope>
</imprint>
</monogr>
<idno type="istex">DA0AF197299235245290697937CD2FE3A7361212</idno>
<idno type="DOI">10.1006/icar.1999.6320</idno>
<idno type="PII">S0019-1035(99)96320-0</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3±1)×1014 and (1.4±0.4)×1015 cm−2, respectively; our models indicate that a globally averaged oxygen influx of (4±2)×106 O atoms cm−2 s−1 is required to explain these observations. Models with a locally enhanced influx of H2O operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3±2)×10−16 g cm−2 s−1 of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon–oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen–oxygen bonded material is converted to carbon–oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-μm CO observations of Noll and Larson (Icarus 89, 168–189, 1990) and determine that the CO lines are most sensitive to the 100- to 400-mbar column density for which we derive a range of (0.7–1.5)×1017 cm−2; the CO observations do not allow us to distinguish between an external or internal source of CO on Saturn. If we assume that all the extraplanetary oxygen derives from a micrometeoroid source, then the unfocused dust flux at 9.5 AU must be (i) (1±0.7)×10−16 g cm−2 s−1 if interstellar grains are the source of the external oxygen on Saturn, (ii) (4±3)×10−17 g cm−2 s−1 if IDPs on randomly inclined, highly eccentric orbits (e.g., Halley-type comet grains) are the source of the external oxygen, or (iii) (2±1.4)×10−18 g cm−2 s−1 if IDPs on low inclination, low eccentricity orbits (e.g., Kuiper-belt grains) are the source of the external oxygen. These estimates can be used in combination with future Cassini dust detection data to determine the ultimate source of the dust at Saturn's distance from the Sun.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>Saturn</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>atmosphere</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>photochemistry</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>interplanetary dust</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>infrared observations</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>meteoroids</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999-08-18">Modified</change>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/DA0AF197299235245290697937CD2FE3A7361212/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>YICAR</jid>
<aid>96320</aid>
<ce:pii>S0019-1035(99)96320-0</ce:pii>
<ce:doi>10.1006/icar.1999.6320</ce:doi>
<ce:copyright type="full-transfer" year="2000">Academic Press</ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Regular Article</ce:textfn>
</ce:dochead>
<ce:title>Photochemistry of Saturn's Atmosphere</ce:title>
<ce:subtitle>II. Effects of an Influx of External Oxygen</ce:subtitle>
<ce:author-group>
<ce:author>
<ce:given-name>Julianne I.</ce:given-name>
<ce:surname>Moses</ce:surname>
<ce:cross-ref refid="A0">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Emmanuel</ce:given-name>
<ce:surname>Lellouch</ce:surname>
<ce:cross-ref refid="A1">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Bruno</ce:given-name>
<ce:surname>Bézard</ce:surname>
<ce:cross-ref refid="A1">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>G.Randall</ce:given-name>
<ce:surname>Gladstone</ce:surname>
<ce:cross-ref refid="A2">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Helmut</ce:given-name>
<ce:surname>Feuchtgruber</ce:surname>
<ce:cross-ref refid="A3">
<ce:sup>d</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Mark</ce:given-name>
<ce:surname>Allen</ce:surname>
<ce:cross-ref refid="A4">
<ce:sup>e</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="FN1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="A0">
<ce:label>a</ce:label>
<ce:textfn>Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058-1113,
<ce:footnote id="F1">
<ce:label>f1</ce:label>
<ce:note-para>moses@lpi.usra.edu</ce:note-para>
</ce:footnote>
<ce:cross-ref refid="F1">
<ce:sup>f1</ce:sup>
</ce:cross-ref>
</ce:textfn>
</ce:affiliation>
<ce:affiliation id="A1">
<ce:label>b</ce:label>
<ce:textfn>DESPA, Observatoire de Paris, Meudon, 92195, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="A2">
<ce:label>c</ce:label>
<ce:textfn>Space Sciences Department, Southwest Research Institute, San Antonio, Texas, 78228-0510</ce:textfn>
</ce:affiliation>
<ce:affiliation id="A3">
<ce:label>d</ce:label>
<ce:textfn>Max-Planck Institut für Extraterrestrische Physik, Garching, 85740, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="A4">
<ce:label>e</ce:label>
<ce:textfn>Earth and Space Science Division, Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, Pasadena, California, 91109</ce:textfn>
</ce:affiliation>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>Also at Division for Geological and Planetary Sciences, Caltech 170-25, Pasadena, CA 91125.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-received day="7" month="4" year="1999"></ce:date-received>
<ce:date-revised day="18" month="8" year="1999"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO
<ce:inf>2</ce:inf>
and H
<ce:inf>2</ce:inf>
O above 10 mbar in Saturn's atmosphere are (6.3±1)×10
<ce:sup>14</ce:sup>
and (1.4±0.4)×10
<ce:sup>15</ce:sup>
cm
<ce:sup>−2</ce:sup>
, respectively; our models indicate that a globally averaged oxygen influx of (4±2)×10
<ce:sup>6</ce:sup>
O atoms cm
<ce:sup>−2</ce:sup>
s
<ce:sup>−1</ce:sup>
is required to explain these observations. Models with a locally enhanced influx of H
<ce:inf>2</ce:inf>
O operating over a small fraction of the projected area do not provide as good a fit to the ISO H
<ce:inf>2</ce:inf>
O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3±2)×10
<ce:sup>−16</ce:sup>
g cm
<ce:sup>−2</ce:sup>
s
<ce:sup>−1</ce:sup>
of extraplanetary material. To reproduce the observed CO
<ce:inf>2</ce:inf>
/H
<ce:inf>2</ce:inf>
O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon–oxygen bonded species such as CO or CO
<ce:inf>2</ce:inf>
. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO
<ce:inf>2</ce:inf>
/H
<ce:inf>2</ce:inf>
O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen–oxygen bonded material is converted to carbon–oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-μm CO observations of Noll and Larson (
<ce:italic>Icarus</ce:italic>
89, 168–189, 1990) and determine that the CO lines are most sensitive to the 100- to 400-mbar column density for which we derive a range of (0.7–1.5)×10
<ce:sup>17</ce:sup>
cm
<ce:sup>−2</ce:sup>
; the CO observations do not allow us to distinguish between an external or internal source of CO on Saturn.</ce:simple-para>
<ce:simple-para>If we assume that all the extraplanetary oxygen derives from a micrometeoroid source, then the unfocused dust flux at 9.5 AU must be (i) (1±0.7)×10
<ce:sup>−16</ce:sup>
g cm
<ce:sup>−2</ce:sup>
s
<ce:sup>−1</ce:sup>
if interstellar grains are the source of the external oxygen on Saturn, (ii) (4±3)×10
<ce:sup>−17</ce:sup>
g cm
<ce:sup>−2</ce:sup>
s
<ce:sup>−1</ce:sup>
if IDPs on randomly inclined, highly eccentric orbits (e.g., Halley-type comet grains) are the source of the external oxygen, or (iii) (2±1.4)×10
<ce:sup>−18</ce:sup>
g cm
<ce:sup>−2</ce:sup>
s
<ce:sup>−1</ce:sup>
if IDPs on low inclination, low eccentricity orbits (e.g., Kuiper-belt grains) are the source of the external oxygen. These estimates can be used in combination with future Cassini dust detection data to determine the ultimate source of the dust at Saturn's distance from the Sun.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>Saturn</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>atmosphere</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>photochemistry</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>interplanetary dust</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>infrared observations</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>meteoroids</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Photochemistry of Saturn's Atmosphere</title>
<subTitle>II. Effects of an Influx of External Oxygen</subTitle>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Photochemistry of Saturn's Atmosphere</title>
<subTitle>II. Effects of an Influx of External Oxygen</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">Julianne I.</namePart>
<namePart type="family">Moses</namePart>
<affiliation>Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058-1113, f1 moses@lpi.usra.eduf1</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Lellouch</namePart>
<affiliation>DESPA, Observatoire de Paris, Meudon, 92195, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bruno</namePart>
<namePart type="family">Bézard</namePart>
<affiliation>DESPA, Observatoire de Paris, Meudon, 92195, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.Randall</namePart>
<namePart type="family">Gladstone</namePart>
<affiliation>Space Sciences Department, Southwest Research Institute, San Antonio, Texas, 78228-0510</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helmut</namePart>
<namePart type="family">Feuchtgruber</namePart>
<affiliation>Max-Planck Institut für Extraterrestrische Physik, Garching, 85740, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Allen</namePart>
<affiliation>Earth and Space Science Division, Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, Pasadena, California, 91109</affiliation>
<description>Also at Division for Geological and Planetary Sciences, Caltech 170-25, Pasadena, CA 91125.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<dateModified encoding="w3cdtf">1999-08-18</dateModified>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3±1)×1014 and (1.4±0.4)×1015 cm−2, respectively; our models indicate that a globally averaged oxygen influx of (4±2)×106 O atoms cm−2 s−1 is required to explain these observations. Models with a locally enhanced influx of H2O operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3±2)×10−16 g cm−2 s−1 of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon–oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen–oxygen bonded material is converted to carbon–oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-μm CO observations of Noll and Larson (Icarus 89, 168–189, 1990) and determine that the CO lines are most sensitive to the 100- to 400-mbar column density for which we derive a range of (0.7–1.5)×1017 cm−2; the CO observations do not allow us to distinguish between an external or internal source of CO on Saturn. If we assume that all the extraplanetary oxygen derives from a micrometeoroid source, then the unfocused dust flux at 9.5 AU must be (i) (1±0.7)×10−16 g cm−2 s−1 if interstellar grains are the source of the external oxygen on Saturn, (ii) (4±3)×10−17 g cm−2 s−1 if IDPs on randomly inclined, highly eccentric orbits (e.g., Halley-type comet grains) are the source of the external oxygen, or (iii) (2±1.4)×10−18 g cm−2 s−1 if IDPs on low inclination, low eccentricity orbits (e.g., Kuiper-belt grains) are the source of the external oxygen. These estimates can be used in combination with future Cassini dust detection data to determine the ultimate source of the dust at Saturn's distance from the Sun.</abstract>
<note type="content">Section title: Regular Article</note>
<subject lang="en">
<genre>Abbreviations</genre>
<topic>Saturn</topic>
</subject>
<subject lang="en">
<genre>Abbreviations</genre>
<topic>atmosphere</topic>
</subject>
<subject lang="en">
<genre>Abbreviations</genre>
<topic>photochemistry</topic>
</subject>
<subject lang="en">
<genre>Abbreviations</genre>
<topic>interplanetary dust</topic>
</subject>
<subject lang="en">
<genre>Abbreviations</genre>
<topic>infrared observations</topic>
</subject>
<subject lang="en">
<genre>Abbreviations</genre>
<topic>meteoroids</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Icarus</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>YICAR</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">200005</dateIssued>
</originInfo>
<identifier type="ISSN">0019-1035</identifier>
<identifier type="PII">S0019-1035(00)X0018-8</identifier>
<part>
<date>200005</date>
<detail type="volume">
<number>145</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>300</end>
</extent>
<extent unit="pages">
<start>166</start>
<end>202</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">DA0AF197299235245290697937CD2FE3A7361212</identifier>
<identifier type="DOI">10.1006/icar.1999.6320</identifier>
<identifier type="PII">S0019-1035(99)96320-0</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Academic Press</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Academic Press, ©2000</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001F58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DA0AF197299235245290697937CD2FE3A7361212
   |texte=   Photochemistry of Saturn's Atmosphere
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024